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In this paper we describe recent developments in the application of mathematical
and computational techniques to the problem of designing binary gratings on top
of a multilayer stack in such a way that the propagating modes have a specified
intensity or phase pattern for a chosen range of wavelengths or incidence angles. The
diffraction problems are transformed to strongly elliptic variational formulations
of quasi periodic transmission problems for the Helmholtz equation in a bounded
domain coupled with boundary integral representations in the exterior. We obtain
analytic formulae for the gradients of cost functionals with respect to the parameters
of the grating profile and the thickness of the layers, so that the optimal design
problems can be solved by minimization algorithms based on gradient descent. For
the computation of diffraction efficiencies and gradients the variational problems
are solved by using a generalized finite element method with minimal pollution.
We provide some numerical examples to demonstrate the convergence properties for
evaluating diffraction efficiencies and gradients. The method is applied to optimal
design problems for polarisation gratings and beam splitters.c© 1998 Academic Press

Key Words:diffraction by periodic structures; Helmholtz equation; transmission
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1. INTRODUCTION

The practical application of diffractive optics technology has driven the need for math-
ematical models and numerical codes both to solve the full electromagnetic vector-field
equations for complicated grating structures, thus predicting performance given the struc-
ture, and to carry out optimal design of new structures.

Within the so-called rigorous grating theory, which is based on Maxwell’s equations, pe-
riodic gratings can be modeled as quasi-periodic transmission problems for the Helmholtz
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equation in the whole plane. Special difficulties are associated with the numerical solution
of these problems due to the highly oscillatory nature of waves and interfaces. Various
methods have been proposed to evaluate the solution for a given structure, i.e., to solve
the direct diffraction problem. Among the most well known are modal expansion, differ-
ential and integral methods (cf. the classical monograph [1] and recent extensions and
improvements in, e.g. [2–7]). These methods turned out to be efficient for solving the direct
diffraction problem for certain classes of grating structures, but it is difficult to find any
mathematical treatment of convergence in the literature. Such a convergence analysis can
be found in the case of smooth interfaces between different materials for integral equation
methods and the analytical continuation method introduced in [8]. In the case of binary
structures, whose surface profile is given by a piecewise constant function, the mathemati-
cal complexities are amplified by singularities of the solutions. Recently, a new variational
approach was proposed (see [9–10] and the references therein), which appears to be well
adapted for the analytical and numerical treatment of very general diffraction structures as
well as complex materials and allows straightforward extensions to diffraction problems
for conical mounting and crossed gratings [11–12]. In particular, this approach is the basis
for the convergence analysis of finite element solution methods provided in [13–15]. We
note that in [16] a similar method was used for photolithography simulation on nonplanar
substrate.

But it is more important that the variational approach leads to effective formulae for the
gradient of cost functionals arising in optimal design problems as shown in [17, 15], such
that gradient-based minimization methods can be used to find gratings with specified optical
functions. There have been a number of papers from the engineering community that are
concerned with the optimal design of periodic gratings. By far the greatest activity has been
in optimization for ray-tracing and phase-reconstruction techniques which are valid within
the domain of Fourier optics. A few of these papers (e.g. [18–20]) are devoted to optimization
problems using rigorous diffraction theory. However, the optimization procedures used
there are based only on the values of certain cost functionals; i.e., they require the solution
of a large number of direct problems and are therefore computationally expensive. More
advanced methods to find optimal solutions utilize, besides the values of cost functionals,
also its gradients or even properties of higher order differentials. The simplest example are
descent-type algorithms, which are computationally effective if explicit gradient formulae
are available. But so far gradient formulas were obtained only for the TE case; see [17],
where interface mixture problems have been studied. Sometimes the approximation of
gradients by simple difference quotients is used, which is, however, very inefficient for a
large number of parameters.

In the present paper we apply some mathematical results from [15] to the model problem
of designing binary gratings on top of a multilayer stack in such a way that the propagating
modes have a specified intensity or phase pattern for a chosen range of wavelengths or
incidence angles. First we present the variational formulations of the diffraction problems
for TE and TM polarization and give a summary of some existence and uniqueness results.
In Section 3 we consider a typical optimal design problem, formulate the cost functional
and write down the formulae for the gradients with respect to the parameters of the grating
profile and the thicknesses of the layers. Then the optimal design problem can be solved
by minimization algorithms based on gradient descent. For the computation of diffraction
efficiencies and of the gradients we use a reliable numerical method which originates from
the variational formulations. This method, which combines a generalized finite element
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method in the grating structure with Fourier expansions in the multilayer system, is discussed
in Section 4. It is known that the accuracy of the usual Galerkin FEM for the Helmholtz
equation deteriorates for large wave numbers. More precisely, the rationFEM/no goes to
infinity with increasing wave number, whereno is the dimension of the finite element
space required to achieve a prescribed accuracy and the Galerkin–FE solution needs the
dimensionnFEM to get the same accuracy. This nonrobust behavior of the FEM with respect
to the wavenumber is called thepollution effect. The goal of the generalized FEM (GFEM)
is to modify the entries of the FEM system matrix in such a way that the rationFEM/no

increases as slowly as possible. Our construction of the GFEM with minimal pollution
extends a recent approach of [21] to problems with piecewise constant wave numbers on
rectangular partitions and leads to essentially better numerical results than usual FEM.
Finally we provide some numerical examples to demonstrate the convergence properties of
this method for evaluating diffraction efficiencies and gradients. The last section includes
also several examples of optimal design problems including polarisation gratings and beam
splitters.

2. VARIATIONAL FORMULATION OF THE DIRECT SCATTERING PROBLEM

Consider a binary grating of periodd, with heightH and transition pointst j at the top of
a stack of layers of thicknessesh j . The materials are nonmagnetic with the permeabilityµ0

and have the dielectric constantsε. The coordinate system is chosen such that the diffraction
problem is invariant in thex3 direction and that thex1 axis is parallel to the layers. Thus
the problem is determined by the functionε(x1, x2) which isd-periodic inx1. We assume
that the material above the grating profile0 is homogeneous withε = ε+ > 0. Below0

the material may be inhomogeneous and we assume that the functionε = ε− is piecewise
constant corresponding to the different layers and constant for the substrate. Further, we
suppose that theε− can be complex valued with Imε− ≥ 0 and Reε− > 0 if Im ε− = 0.

Assume that an incoming plane wave with time dependence exp(−i ωt) is incident in the
(x1, x2)-plane upon the grating from the top with the angle of incidenceθ ∈ (−π/2, π/2).
Then the electromagnetic field does not depend onx3. In either case of polarization, one
of the fieldsE or H remains parallel to the grooves and is therefore determined by a single
scalar quantityv = v(x1, x2) (equal to the transverse component ofE in the TE case and to
the transverse component ofH in the TM case). The functionv satisfies two-dimensional
Helmholtz equations

1v + ω2µ0εv = 0 (2.1)

in the regions with constant permittivity, together with the usual outgoing wave condition
at infinity. At the material interfaces the solutions are subjected to well-known transmission
conditions. For TE polarisation the solution and its normal derivative∂nv have to cross the
interface continuously, whereas in TM polarisation the productε−1∂nv has to be continuous
(for more details cf. the classical monograph [1]).

The diffraction problems admit variational formulations in a bounded periodic cell which
were introduced in [9, 10]. In the followingk denotes the piecewise constant function
ω(µ0ε)

1/2. Above the profile0 it takes the constant valuek+ = ω(µ0ε
+)1/2, whereas below

0 it coincides with the piecewise constant functionk− = ω(µ0ε
−)1/2 (kg, k1, k2, andk3 in
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FIG. 2.1. Problem geometry.

Fig. 2.1). We assume that

Rek+ > 0, Rek− > 0, Im k− ≥ 0. (2.2)

Note thatk = ων(µ0ε0)
1/2, whereε0 is the permittivity of the vacuum andν = (ε/ε0)

1/2

denotes the optical index. The incoming wave has the formvi = exp(i αx1 − iβx2), where
α = k+ sinθ , β = k+ cosθ . If we introduce two artificial boundaries0± = {x2 = b±} lying
above0 and below the layer structure, respectively, denote byÄ the rectangle(0, d) ×
(b−, b+) and define thed-periodic functionu = v exp(−i αx1), then the diffraction problem
for TE polarization can be transformed to a variational problem foru in the rectangleÄ.
Multiplying the differential equation (2.1) by some smooth function, applying Green’s
formula, and taking into account the transmission conditions at the material interfaces and
the outgoing wave condition on0±, it can be shown (cf. [10, 15]) that the diffraction problem
for TE polarization is equivalent to the variational equation

BTE(u, ϕ) :=
∫
Ä

∇αu · ∇αϕ −
∫
Ä

k2uϕ̄ +
∫

0+

(T+
α u)ϕ̄ +

∫
0−

(T−
α u)ϕ̄

= −
∫

0+

2iβ exp(−iβb+)ϕ̄, ∀ϕ, (2.3)

where∇α = (∂x1,α, ∂x2) := ∇ + i (α, 0). The functionsT±
α u are defined on0± as

(
T±

α u
)(

x1, b±)
:= −

∞∑
n=−∞

iβ±
n û±

n exp(inK x1), (2.4)

whereK = 2π/d andû±
n denote the Fourier coefficients ofu(x1, b±):

û±
n = 1

d

d∫
0

u
(
x1, b±)

exp(−inK x1) dx1.
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The numbersβ±
n are defined as

β±
n = β±

n (α) := (
(k±)2 − α2

n

)1/2
, 0 ≤ argβ±

n < π,

where as usualαn = α + nK andk− = k−(x1, b−).
The variational equation (2.3) should be satisfied for all test functionsϕ ∈ H1

p(Ä), that
is the function space of all complex-valued functionsϕ which ared-periodic in x1 and,
together with their first-order partial derivatives, square integrable inÄ; see [22] for the
variational approach to classical elliptic boundary value problems.

The variational formulation (2.3) is very useful, because the transmission and outgoing
wave conditions are enforced implicitly and it allows to seek the solution in the function
spaceH1

p(Ä), which is natural for second-order partial differential equations on nonsmooth
domains. Here one can apply well established methods for the analysis and numerical
solution of the diffraction problems.

Note that any solution of (2.3) satisfies on0± the boundary conditions

∂nu|0+ + T+
α u|0+ = −2iβ exp(−iβb+), ∂nu|0− + T−

α u|0− = 0. (2.5)

which implies the Fourier series expansion

u(x1, b+) =
∞∑

n=−∞
A+

n exp(iβ+
n b+) exp(inK x1) + exp(−iβb+),

u(x1, b−) =
∞∑

n=−∞
A−

n exp(−iβ−
n b−) exp(inK x1).

(2.6)

Thus, the operatorsT±
α are the Dirichlet-to-Neumann mappings,

∂nu±|0± = −T±
α u±|0± , (2.7)

for functions of the form

u(x1, x2) =
∞∑

n=−∞
A±

n exp
(±iβ±

n x2
)

exp(inK x1), x2 >< b±.

Similarly, the TM diffraction problem can be formulated as follows (cf. [10], [15]):

BTM(u, ϕ) :=
∫
Ä

1

k2
∇αu · ∇αϕ −

∫
Ä

uϕ̄ +
∫

0+

1

(k+)2
(T+

α u)ϕ̄ +
∫

0−

1

(k−)2
(T−

α u)ϕ̄

= −
∫

0+

2iβ

(k+)2
exp(−iβb+)ϕ̄ ∀ϕ ∈ H1

p(Ä). (2.8)

THEOREM1 [15]. Suppose that k satisfies condition(2.2). Then the sesquilinear forms
BTE and BTM are strongly elliptic over H1

p(Ä).

Here we call a bounded sesquilinear forma(·, ·), given on some Hilbert spaceX, strongly
elliptic if there exist a complex numberφ, |φ| = 1, a constantc> 0, and a compact form
q(·, ·) such that

Rea(φu, u) ≥ c‖u‖2
X − q(u, u) ∀u ∈ X.
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Based on the variational formulation of the diffraction problems and Theorem 1 the
following existence and uniqueness results can be established ([15], [9]):

1. The TE and TM diffraction problems admit solutionsu ∈ H1
p(Ä) for all ω > 0 andθ .

These solutions are unique for all but a sequence of countable frequenciesω j , ω j → ∞.
2. For TE polarisation the solutionu(x1, x2) = Ex3(x1, x2) exp(−i αx1) has square inte-

grable second-order partial derivatives,u ∈ H2
p(Ä).

3. In the TM case the solutionu(x1, x2) = Hx3(x1, x2) exp(−i αx1)may have singularities
at the corner points(t j , 0) and(t j , H) of the grating. More precisely, near corner points
there holdsu = r λ f + g, wherer denotes the distance to the corner point, the exponent
λ with 0< Reλ < 1 is determined by the optical index of the grating material andf, g
are some smoother functions. In particular, if two materials with optical indicesν1 andν2,
respectively, meet at some corner thenλ is the solution with minimal positive real part of
the equation

(
sin(πλ/2)

sin(πλ)

)2

=
(

ν2
1 + ν2

2

ν2
1 − ν2

2

)2

.

Hence, the partial derivatives ofu are only of the formr λ−1 f + g, i.e. the electric field
componentsEx1 andEx2 are strongly singular and the normal derivative ofu on0 does not
satisfy the Meixner condition, i.e.∂nu /∈ L2(0), in general.

4. Introduce the set of exceptional values (Rayleigh frequencies):

R(ε) = {(ω, θ) : ∃ n ∈ Z such that(nK + ω(µε+)1/2 sinθ)2 = ω2µε±}.

If for (ω0, θ0) /∈ R(ε) one of the diffraction problems is uniquely solvable, then the solution
u depends analytically onω andθ in a neighbourhood of this point.

5. If one of the materials below0 is absorbing then the TE problem has a unique solution
for all frequenciesω > 0.

6. If one of the layer materials is absorbing then the TM problem has a unique solution
for all frequenciesω > 0.

7. Letε(x) > 0 for x ∈ Ä. Suppose that there existsτ ∈R such that(
(x2 + τ)

∂ε

∂x2
, v

)
L2(Ä)

≥ 0 for all v ≥ 0.

Then the TE diffraction problem is uniquely solvable forω > 0. (This condition is always
satisfied if only two materials are present.)

Note that the variational formulation of the diffraction problems and the validity of the
corresponding mathematical results are not restricted to binary or other rectangular grating
profiles. They remain valid for general piecewise constant functionsk satisfying condition
(2.2); hence the presented approach is applicable to rather complex grating structures. But
here we focus on the case of binary profiles for which optimal design problems will be
considered.

Define the finite sets of indicesP± = {r ∈ Z : β±
r ∈R}. Then the Rayleigh amplitudes

A+
r (r ∈ P+) (resp.A−

r (r ∈ P−)), which are called the reflection (resp. transmission) coef-
ficients, correspond to the propagating modes ofu. Note thatP− = ∅ if Im k−(x1, b−) 6= 0.
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The reflection and transmission coefficientsA+
r (r ∈ P+) (resp.A−

r (r ∈ P−)), which cor-
respond to the propagating modes ofu, are determined by the Fourier coefficients ofu on
the artificial boundaries0±:

A+
0 = −exp(−2iβb+) + exp(−iβb+)û+

0 , A±
r = exp

(∓iβ±
r b±)

û±
r , r ∈ P+\{0}, r ∈ P−.

(2.9)

The reflected and transmitted efficiencies are defined by

eTE,±
r = (

β±
r

/
β
)∣∣A±

r

∣∣2
, eTM,+

r = (β+
r /β)|A+

r |2, eTM,−
r = (k+/k−)2(β−

r /β)|A−
r |2.
(2.10)

3. AN OPTIMAL DESIGN PROBLEM

A typical minimization problem occurring in the optimal design of binary gratings on
some multilayer system is the following. Assume that the period of the grating and the num-
ber of transition points and of thin-film layers are fixed. For given numberscTE,±

r , cTM,±
r ∈

{−1, 0, 1}, define the functional

J(4) =
∑
r ∈P+

(
cTE,+

r eTE,+
r + cTM,+

r eTM,+
r

) +
∑
r ∈P−

(
cTE,−

r eTE,−
r + cTM,−

r eTM,−
r

)
. (3.1)

Note that the efficienciese±
r are functions of the grating profile0 and the layer interfaces

3 j . If we fix one transition pointt0 at the origin the efficienciese±
r are therefore functions

of t1, . . . , tm−1, H, `1, . . . `p (cf. Fig. 2.1). Now the minimization problem reads as follows:
Find transition pointst0

1 , . . . , t0
m−1 and the heightH0 of the binary grating profile00, as

well as thicknesses of the layer structure, such that

min
(t1,...,tm−1,H,`1,...`p)∈K

J(4) = J(40), (3.2)

whereK is some compact set in the parameter spaceRm+p reflecting, e.g., natural con-
straints on the design of the grating and the thin-film layers. Note that the choicec±

r = −1
(resp.c±

r = 1) in (3.1) amounts to maximizing (resp. minimizing) the efficiency of the
corresponding reflected or transmitted propagating mode of orderr .

Other minimization problems:

1. If one wants to obtain prescribed values for certain reflection and transmission effi-
ciencies, given by the index setsI + ⊂ P+ and I − ⊂ P−, the following smooth functional
can be useful: ∑

r ∈I +

(∣∣eTE,+
r − cTE,+

r

∣∣2 + ∣∣eTM,+
r − cTM,+

r

∣∣2
)

+
∑
r ∈I −

(∣∣eTE,−
r − cTE,−

r

∣∣2 + ∣∣eTM,−
r − cTM,−

r

∣∣2
)

→ min.

2. The optimal design of a grating providing a given phase shiftϕ between ther th
reflected TE and TM mode can be performed using the functional

−eTE,+
r − eTM,+

r + ∣∣ATE,+
r − exp(i ϕ)ATM,+

r

∣∣2 → min. (3.3)
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Obviously many other functionals are possible, especially if a corresponding optimization
over a range of wavelengths or incidence angles is required.

To find local minima of these functionals, the method of gradient descent or other gradient-
type methods can be applied. Thus we must calculate the gradient ofJ(4), for example,
which can be easily expressed in terms of the partial derivativesDj A±

r (0) (with respect to
the transition pointst1, . . . , tm − 1, the heightH , and the layer thicknesses, given by the
coordinates̀ j ) of the reflection and transmission coefficients in both the TE and TM case.
Here we propose to use gradient formulae based on the solution of the direct problem and
its adjoint, instead of simple difference quotients which are very expensive to compute for
a large number of parameters.

The gradient ofJ(4) is given by

Dj J(4) =
∑
r ∈P+

2(β+
r /β)

{
cTE,+

r Re
(

ATE,+
r (4)Dj ATE,+

r (4)
)

+ cTM,+
r Re

(
ATM,+

r (4)Dj ATM,+
r (4)

)}
+

∑
r ∈P−

2(β−
r /β)

{
cTE,−

r Re
(

ATE,−
r (4)Dj ATE,−

r (4)
)

+ (k+/k−)2cTM,−
r Re

(
ATM,−

r (4)Dj ATM,−
r (4)

)}
. (3.4)

Once one has derived explicit formulae for those partial derivatives, it is possible to
compute also the gradients for a much more general class of functionals involving the
Rayleigh coefficients for a given range of incidence angles or wavelengths.

The formulae for all components of the gradient ofA±
r in the TE case take the form:

Dj A±
r (4) = (−1) j −1

(
k2

g − (k+)2
) ∫
6 j

uw̄± dx2, j = 1, . . . , m − 1,

DmA±
r (4) = (

k2
g − (k+)2

) ∫
6m

uw̄± dx1,

Dm+ j A±
r (4) = (

k2
j − k2

j +1

) ∫
3 j

uw̄± dx1, j = 1, . . . , p,

(3.5)

whereu is the solution to the TE diffraction problem (2.3) and the functionsw± solve the
adjoint TE problems,

BTE(ϕ, w±) = exp
(∓iβ±

r b±)
d

∫
0±

ϕ exp(−ir K x1) dx1 ∀ϕ ∈ H1
p(Ä). (3.6)

Here6m is the union of all upper horizontal segments of0, whereas6 j ( j = 1, . . . , m−1)

denotes the vertical segment at the transition pointt j . For the derivation of (3.5) and the
corresponding formula (3.7) below in the TM case, we refer to [15]. In the latter case
the gradient formulae involve the partial derivatives of the solution of direct and adjoint
problems at the interfaces. If the optical index of the grating material is such that the solution
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u satisfies the Meixner condition then

Dj A±
r (4) = (−1) j −1

(
k2

g − (k+)2
) ∫
6 j

gr(u) · gr(w±) dx2, j = 1, . . . , m − 1,

DmA±
r (4) = (

k2
g − (k+)2

) ∫
6m

grH (u) · grH (w±) dx1,

Dm+ j A±
r (4) = (

kj − k2
j +1

) ∫
6 j

gr j (u) · gr j (w±) dx2, j = 1, . . . , p,

(3.7)

Here,u is the solution of the direct TM problem (2.8), the functionsw± solve the adjoint
problem

BTM(ϕ, w±) = exp
(∓iβ±

r b±)
d

∫
0±

ϕ exp(−ir K x1) dx1 ∀ϕ ∈ H1
p(Ä), (3.8)

and

gr(u) = 1

k+kg

(
kg

k+ ∂x1,αu

∣∣∣∣+
6 j

, ∂x2u

∣∣∣∣+
6 j

)
= 1

k+kg

(
k+

kg
∂x1,αu

∣∣∣∣−
6 j

, ∂x2u

∣∣∣∣−
6 j

)
,

grH (u) = 1

k+kg

(
∂x1,αu

∣∣∣∣+
6m

,
kg

k+ ∂x2u

∣∣∣∣+
6m

)
= 1

k+kg

(
∂x1,αu

∣∣∣∣−
6m

,
k+

kg
∂x2u

∣∣∣∣−
6m

)
,

gr j (u) = 1

kj kj +1

(
∂x1,αu

∣∣∣∣+
3 j

,
kj +1

kj
∂x2u

∣∣∣∣+
3 j

)
= 1

kj kj +1

(
∂x1,αu

∣∣∣∣−
3 j

,
kj

kj +1
∂x2u

∣∣∣∣−
3 j

)
,

where the plus (resp. minus) signs denote the one-sided limits as the interfaces are ap-
proached from the region above (resp. below).

If the Meixner condition is not fulfilled then the gradient formula has to be modified by
an additional term depending onλ.

Concerning the solvability of the adjoint problems (3.6) and (3.8) the same existence and
uniqueness results as for the direct problems remain valid. This follows from the fact that
the solutions of the adjoint TE or TM problem solve the corresponding diffraction problem
with the complex conjugate wave numbersk̄ and a special radiation condition. For example,
for w− this condition takes the form

w−(x1, x2) =
∞∑

n=−∞
A+

n exp(−i β+
n x2) exp(inK x1), x2 ≥ b+,

w−(x1, x2) =
∞∑

n=−∞
A−

n exp(i β−
n x2) exp(inK x1) (3.9)

+ iC

4πβ−
r

exp(−iβ−
r x2) exp(ir K x1), x2 ≤ b−

with C = 1 for TE andC = (k+/k−)2 for TM.
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We emphasis that in order to compute all partial derivatives of functionals arising in the
optimal design of binary gratings it is sufficient to solve the direct TE and TM diffraction
problem and only one corresponding adjoint problem. We demonstrate this for the functional
J(4) defined in (3.1).

From formulae (3.4), (3.5), and (3.7) we obtain by linearity that the components of the
gradient ofJ(4) are equal to

Dj J(4) = (−1) j −1Re

(
k2

g − (k+)2
) ∫

6 j

uTE wTE dx2 +
∫

6 j

gr(uTM) · gr(wTM) dx2


 ,

j = 1, . . . , m − 1,

DmJ(4) = Re

(
k2

g − (k+)2
) ∫

6m

uTE wTE dx1 +
∫

6m

grH (uTM) · grH (wTM) dx1


 ,

Dm+ j J(4) = Re

(
k2

j − k2
j +1

) ∫
3 j

uTE wTE dx1 +
∫
3 j

gr j (u
TM) · gr j (wTM) dx1


 ,

j = 1, . . . , p,

whereuTE anduTM are the solutions of the direct TE and TM problems, respectively, and
wTE, wTM solve the following adjoint problems:

BTE(ϕ, wTE) =
∑
r ∈P+

cTE,+
r ATE,+

r
2β+

r exp(−iβ+
r b+)

dβ

∫
0+

ϕ exp(−ir K x1) dx1

+
∑
r ∈P−

cTE,−
r ATE,−

r
2β−

r exp(iβ−
r b−)

dβ

∫
0−

ϕ exp(−ir K x1) dx1, (3.10)

BTM(ϕ, wTM) =
∑
r ∈P+

cTM,+
r ATM,+

r
2β+

r exp(−iβ+
r b+)

dβ

∫
0+

ϕ exp(−ir K x1) dx1

+
∑
r ∈P−

cTM,−
r ATM,−

r
2β−

r (k+)2 exp(iβ−
r b−)

dβ(k−)2

∫
0−

ϕ exp(−ir K x1) dx1

∀ϕ ∈ H1
p(Ä). (3.11)

HereATE,±
r andATM,±

r denote the Rayleigh amplitudes ofuTE anduTM, respectively.
Note that for simple difference approximations of the gradient the number of the direct

problems to be solved is at least equal to the number of optimization parameters, whereas
the computational costs for solving adjoint and direct problems are the same.

4. NUMERICAL METHOD AND IMPLEMENTATION

Having described the variational formulation and some basic mathematical properties of
the direct diffraction problems as well as the gradient formulae and the variational equations



             

OPTIMAL DESIGN OF BINARY GRATINGS 613

of the adjoint problems, we now consider the numerical solution method of these variational
problems.

The proposed method combines a finite element method (FEM) in the grating region,
where the solutions are not smooth, with Rayleigh series expansions of the solution within
the different layers below the grating.

As discussed in Sections 2 and 3 the direct and adjoint problems (2.3), (2.8), (3.10), and
(3.11) have the form: findu ∈ H1

p(Ä) satisfying the equations

a(u, ϕ) = ( f, ϕ) for all ϕ ∈ H1
p(Ä), (4.1)

wherea(u, ϕ) is a strongly elliptic sesquilinear form, and( f, ϕ) stands for a linear and
continuous functional on the function spaceH1

p(Ä).
Choosing a sequence of partitions{Äh} of Ä with the discretization parameterh and

correspondingly a sequence{Sh} of finite-dimensional subspaces ofH1
p(Ä), the strong

ellipticity implies that all invertible problems under consideration lead to uniquely solvable
linear systems of the form

a(uh, ϕh) = ( f, ϕh) for all ϕh ∈ Sh, (4.2)

if h is sufficiently small. Moreover, the approximate solutions converge to the corresponding
exact solution in the norm of the function spaceH1

p(Ä) with optimal order.
In the case that the grating is situated on top of a multilayer stack, one can reduce the

integration domainÄ used in the FE solution by taking into account that the solution is
smooth within the layers. We introduce a new artificial boundary0̃− = {x2 = b̃−} into the
first layer,`1 < b̃− < 0 ( cf. Fig. 2.1), and new nonlocal boundary operatorsT̃TE

α andT̃TM
α

which model the layer system below̃0−, together with the radiation condition forx2 < b−.
In any layer the solution of the corresponding Helmholtz equation can be written as

u(x1, x2) =
∞∑

n=−∞

(
Aj

n exp
(−iβ j

n x2
) + B j

n exp
(
iβ j

n x2
))

exp(inK x1), ` j −1 ≤ x2 ≤ ` j ,

whereβ j
n = (k2

j − (n + α)2)1/2, and we set̀ 0 = 0. The transmission conditions at each of
the interfaces connect the coefficients(Aj

n, B j
n) and(Aj +1

n , B j +1
n ) via 2× 2 transmission

matrices. Since the radiation condition (2.6) impliesB−
n = 0, one gets explicit formulae for

the numbersγn connecting thenth Fourier coefficient of a solution and its normal derivative
on 0̃−:

∂nu|0̃− = −
∑
n∈Z

i γnûn exp(inK x1), whereûn = 1

d

2π∫
0

u(x1, b̃−) exp(−inK x1) dx1.

The coefficientsγn are different for TE and TM polarization, but it can be easily seen that they
converge toβ1

n = (k2
1 − α2

n)
1/2, i.e. |γn − β1

n| → 0 as|n| → ∞. For evaluating these scalars
one can use a recursive algorithm which is numerically stable for any number of layers, and
there is no limit in layer thickness. Matrix algorithms of this type are widely used in other
numerical methods for analyzing layered structures (see [7] and the references therein).

Thus, if we define nonlocal boundary operators on0̃−,

T̃TE
α u = −

∑
n∈Z

i γ TE
n ûn exp(inK x1), T̃TM

α u = −
∑
n∈Z

i γ TM
n ûn exp(inK x1),
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the direct problems (2.3) and (2.8) are equivalent to the variational equations on the smaller
rectangleÄ̃ = (0, d) × (b̃−, b+),

B̃TE(u, ϕ) :=
∫
Ä̃

∇αu · ∇αϕ −
∫
Ä̃

k2uϕ̄ +
∫

0+

(T+
α u)ϕ̄ +

∫
0̃−

(
T̃TE

α u
)
ϕ̄

= −
∫

0+

2iβ exp(−iβb+)ϕ̄ ∀ϕ ∈ H1
p(Ä̃),

(4.3)

respectively

B̃TM(u, ϕ) :=
∫
Ä̃

1

k2
∇αu · ∇αϕ −

∫
Ä̃

uϕ̄ +
∫

0+

1

(k+)2
(T+

α u)ϕ̄ +
∫
0̃−

1

k2
1

(
T̃TM

α u
)
ϕ̄

= −
∫

0+

2iβ

(k+)2
exp(−iβb+)ϕ̄ ∀ϕ ∈ H1

p(Ä̃).

(4.4)

The adjoint problems (3.6) and (3.8) are reduced analogously to variational formulations
on Ä̃, but note that forw− the right-hand sides change according to the layer structure.

Due to the simple geometry of binary gratings it is quite natural to choose as finite elements
piecewise bilinear functions on a uniform rectangular partition ofÄ̃ = (0, d) × (b̃−, b+).
This leads to a linear system with a block-tridiagonal matrix. The nonlocal boundary terms
in the sesquilinear forms imply that the first and the last block of the main diagonal are fully
occupied matrices, whereas the remaining blocks are sparse.

Let us note that the computation of these nonlocal terms can be performed very efficiently
with an accuracy comparable with the computer precision. Since the traces of the finite
element functions on0± are piecewise linear periodic functions with uniformly distributed
break points, it is possible to use recurrence relations for the Fourier coefficients of spline
functions and convergence acceleration methods.

If the artificial boundary0+ is divided intom subintervals of equal length and the basis
of hat functions{ϕ j } is used, then the form∫

0+

(T+
α ϕp)ϕq dx1 (4.5)

corresponds to anm× m circulant matrix with the eigenvalues

τ0 = −idβ, τp = −2id

(
sin(πp/m)

π

)4 ∞∑
r =−∞

β+
rm+p

m(r + p/m)4
, p = 1, . . . , n − 1.

Thus, one only has to expand

β+
rm+p

m
=

√(
k+

m

)2

−
(

α

m
+

(
r + p

m

)
K

)2

with respect to powers of|r + p/m| and to use fast computation of the generalized zeta
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function

ζ(x, s) =
∞∑

r =0

(r + x)−s.

Since the scalarsγn converge very fast toβ1
n, for the computation of the forms∫

0̃−

(
T̃TE

α ϕp
)
ϕq dx1,

∫
0̃−

(
T̃TM

α ϕp
)
ϕq dx1,

one has to compute only a few of these coefficients and apply the summation method
mentioned before.

Thus the discretization error of the direct and adjoint problems is mainly determined
by the approximation error of the solution with bilinear finite elements. There hold the
following convergence results:

THEOREM 2 [15]. (a) If the TE problem(2.3) has a unique solution, then for all suffi-
ciently small h> 0 the FE discretization of(2.3)and(3.10)are uniquely solvable and the
approximate solutions converge to the corresponding exact solution in the norm of L2(Ä)

with the optimal rate O(h2).
(b) If the TM problem(2.8)has a unique solution, then for all sufficiently small h> 0 the

FE discretization of(2.8)and (3.11)are uniquely solvable and the approximate solutions
converge to the corresponding exact solution with the rate O(h2λ).

Together with error estimates in the norm of the function spaceH1
p(Ä) it is easy to derive

similar estimates for the approximation of the diffraction efficiencies and the gradients of
the minimizing functionals.

As mentioned in the Introduction usual FE approximations of the Helmholtz equation
involve besides the approximation error also the pollution error which increases, together
with the wave number and enlarging domains. For example, due to [23] piecewise linear FE
methods provide the suboptimal discretization error of the formO(h2k3+α), whereα > 0
depends on the domain and the boundary conditions. Roughly speaking, the pollution error
is caused by the well-known fact that the discretization of the Helmholtz equation with the
wave numberk results in an approximate solution possessing a different wave numberkh.
In one-dimensional problems, for example, the usual piecewise linear FE solution of the
equationu′′ + k2u = 0 on a uniform grid has the discrete wave number

kh = 1

h
arccos

2(3 − (kh)2)

6 + (kh)2
= k − k3h2

24
+ O(k5h4).

It turns out that this “phase lag” leads to the suboptimal error estimate mentioned above. For
the one-dimensional case one can easily define a finite element discretization with vanishing
phase lag by introducing a modified wave number. So the FE solution of the equation

u′′ + (k̃(h))2u = 0 with k̃(h) = 6(1 − coskh)

h2(2 + coskh)

has the wave numberk and, forh → 0, the corresponding solutions converge to the exact
solution with the orderO((hk)2) (cf. [21]). Thus, in the one-dimensional case it is possi-
ble to construct a generalized FEM without pollution by modifying the evaluation of the
sesquilinear form.
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Several approaches designed to improve the numerical phase accuracy of FEM in higher
dimensions have been proposed in recent years (cf. [24] and the references therein). How-
ever, as shown in [25], it is not possible to eliminate the pollution in the FE error by any
modification of the evaluation of the sesquilinear form. Therefore we introduce a gener-
alized FEM with minimal phase lag which already for rather poor discretizations of the
domainÄ̃ provides excellent results compared with the usual FEM for both the TE and
TM modes. Here we apply and extend the approach of [21] to design a so-called GFEM
with minimal pollution ensuring that the wave number of the approximate solution almost
coincides with the givenk for piecewise uniform rectangular partitions ofÄ̃.

To fix the idea, consider on a rectangular mesh of size(h1, h2) the bilinear FE discretiza-
tion of the Helmholtz equation1u + k2u = 0 with constantk in some interior node. The
corresponding matrix has a stencil of the form

a3 a2 a3

a1 a0 a1

a3 a2 a3


with the coefficients

a0 = 4
(
h2

1 + h2
2

)
3h1h2

− 4k2h1h2

9
, a1 = h2

1 − 2h2
2

3h1h2
− k2h1h2

9
,

a2 = h2
2 − 2h2

1

3h1h2
− k2h1h2

9
, a3 = −h2

1 + h2
2

6h1h2
− k2h1h2

36
.

(4.6)

Since the function exp(ik1x1 + ik2x2) with k1 = k cosθ , k2 = k sinθ , θ ∈ [0, 2π ], solves
the Helmholtz equation, we expect that a proper discretization of this equation at inner
points should annihilate the grid functionsvθ (ph1, qh2) = exp(ik1 ph1 + ik2qh2) for all
θ ∈ [0, 2π ]. But the application of the FEM stencil to the discrete functionvθ results in

exp(ik1 ph1 + ik2qh2)(a0 + 2a1 cos(k1h1) + 2a2 cos(k2h2) + 4a3 cos(k1h1) cos(k2h2))

= exp(ik1 ph1 + ik2qh2)
(
h1h2

(
h2

1k4
1 + h2

2k4
2

)/
12+ O

(
h3

1h3
2

))
at the grid point(ph1, qh2). Thus, the grid functionvθ does not satisfy the usual FE dis-
cretization of the Helmholtz equation at interior nodes. The idea of [21] was to modify
the coefficientsai of the interior stencil such that its application to the discrete functions
vθ vanishes. This means, the ellipseEh1h2(θ) = (kh1 cosθ, kh2 sinθ), θ ∈ [0, 2π ], should
belong to the set of roots of the symbol function associated with the stencil

G(ξ1, ξ2) := a0 + 2a1 cos(ξ1) + 2a2 cos(ξ2) + 4a3 cos(ξ1) cos(ξ2). (4.7)

However, for any choice of the coefficientsa0, . . . , a3 the zero set of the functionG(ξ1, ξ2)

does not contain any ellipse. Therefore, one has to look for a stencil with the property that
the roots of the corresponding symbol are as close as possible toEh1h2 ash1, h2 → 0. Once
a0 is fixed, the coefficientsa1, a2, anda3 will depend onkh1 andkh2, and we are interested
in analytic expressions for them. Let us denote byNh1h2 the set of roots of the symbolG
lying in some rectangle(−kh1 − ε, kh1 + ε) × (−kh2 − ε, kh2 + ε), whereε > 0 is chosen
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such thatNh1h2 is simply connected. Using the results obtained in [25] for the caseh1 = h2,
one can show that the distance betweenNh1h2 andEh1h2 defined by

Dh1h2 = max
θ∈[0,2π ]

min
ξ∈Nh1h2

∣∣Eh1h2(θ) − ξ
∣∣

can be taken as a measure for the approximation quality of the GFEM. In particular, given
some interior stencil, there exist boundary value problems for the Helmholtz equation such
that the error between the exact solution and the GFEM solution can be estimated in some
special norm from below by

‖u − uGFE‖2 ≥ ch−1Dh1h2, (4.8)

where we seth = √
h1h2 (compare [21, 25]). To find a stencil providing asymptotically the

minimal distanceDh1h2, we use the fact that the asymptotics

max
θ∈[0,2π ]

|G(kh1 cosθ, kh2 sinθ)| = O((kh)`), Dh1h2 = O((kh)`−1)

are equivalent. This can be easily seen if cos(kh1 cosθ + r1) and cos(kh2 sinθ + r2) are
expanded with respect to the distance parametersr1 andr2. Therefore we determine the
coefficientsa1, a2, anda3 in such a way that asymptotically maxθ∈[0,2π ] |g(θ)| is minimal.
Here g denotes theπ -periodic functiong(θ) = G(kh1 cosθ, kh2 sinθ) with the Fourier
series

g(θ) = ĝ0/2 +
∞∑

m=1

ĝ2m cos(2mθ).

Note that in the caseh1 = h2 the functiong has even the periodπ/2. The Fourier coefficients
of g can be obtained by using the formulas

1

π

π∫
0

cos(a cosθ) cos(2mθ) dθ = (−1)mJ2m(a),
1

π

π∫
0

cos(bsinθ) cos(2mθ) dθ = J2m(b),

1

π

π∫
0

cos(a cosθ) cos(bsinθ) cos(2mθ) dθ = J2m(
√

a2 + b2) cos

(
2marctan

a

b

)
,

with the first kind Bessel functionJk. Thus, the Fourier coefficients have the asymptotics

ĝ2m ∼ (kh1)
2m + (kh2)

2m

22m(2m)!
for small kh1 andkh2

if a1, a2, a3 = O(1). Consequently, the functiong with asymptotically minimal
maxθ∈[0,2π ] |g(θ)| is found if, for givena0, the values ofa1, a2, anda3 are chosen such
that the first three Fourier coefficients ofg vanish,ĝ0 = ĝ2 = ĝ4 = 0, which ensures that
maxθ∈[0,2π ] |g(θ)| = O((kh)6). Introducing the function

jk(x) := 2k Jk(x)/xk =
∞∑

n=0

(−x)n

2nn!(n + k)!
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the corresponding linear system can be written in the form

j0(kh1)a1 + j0(kh2)a2 + 2 j0
(
k
√

h2
1 + h2

2

)
a3 = −a0/2

h2
1 j2(kh1)a1 − h2

2 j2(kh2)a2 + 2
(
h2

1 − h2
2

)
j2

(
k
√

h2
1 + h2

2

)
a3 = 0

h4
1 j4(kh1)a1 + h4

2 j4(kh2)a2 + (
2h4

1 − 12h2
1h2

2 + 2h4
2

)
j4

(
k
√

h2
1 + h2

2

)
a3 = 0.

(4.9)

Note that in the case of a quadratic partition,h1 = h2, the solution of (4.9) satisfiesa1 = a2,
and there holds even maxθ∈[0,2π ] |g(θ)| ≤ O((kh)8).

The distance between the ellipseEh1h2 and the zero set of the symbol functionG(ξ1, ξ2)

associated with the solution of (4.9) can be estimated similarly to the technique of [25] for
the caseh1 = h2. One uses an expansion of the zeroes ofG in the form

ξ1 = kh1

(
1 +

∞∑
m=1

rm(θ, q)(kh)2m

)
cosθ, ξ2 = kh2

(
1 +

∞∑
m=1

rm(θ, q−1)(kh)2m

)
sinθ,

whereq = √
h1/h2. From the Taylor series expansion ofG one deduces thatG(ξ1, ξ2) = 0

in a neighborhood of the ellipse if

r1(θ, q) = 0,

r2(θ, q) = (q4 − q−4) cos 6θ

15360
,

r3(θ, q) = (q6 + q−6) cos 8θ

1548288
+ (q6 − q−6) cos 6θ

193536
+ (q2 − q−2)(q4 − q−4) cos 4θ

737280
.

Note that for the usual bilinear FEM stencil with the coefficients (4.6) there holds

r1(θ, q) = q + q−1

96
+ q3 + q−3

64
− q2 + q−2

24
+ (q3 + q−3 − 2(q + q−1)) cos 4θ

192

+ (q3 − q−3 − 2(q2 − q−2)) cos 2θ

48
.

Since

Dh1h2 ≤ max
θ∈[0,2π ]

∣∣∣∣∣
∞∑

m=1

rm(θ, q)(kh)2m+1

∣∣∣∣∣,
for the stencil of the GFEM one obtains the estimate

Dh1h2 ≤ 1

15360
k5

∣∣h2
1 − h2

2

∣∣(h2
1 + h2

2

)3/2 + O((kh)7)

in the case of rectangular partitions, and for quadratic partitions one even has the improved
estimate obtained already in [21]

Dh ≤ 1

774144
(kh)7 + O((kh)9),
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whereas in any case the FEM stencil admits the lower bound

Dh1h2 ≥ 1

24
(kh)3 + O((kh)5).

A rigorous analysis for the convergence of GFEM in two-dimensional problems similar to
Theorem 2 is not known up to now. For the special case of constantk and Dirichlet boundary
conditions one can show by using corresponding results for finite difference methods that
the GFE discretization is uniquely solvable for sufficiently smallh1 and h2 and that it
providesh2 convergence in theL2-norm. However, the dependence onk of the constant in
this error estimate is an open problem, so that estimates from above corresponding to (4.8)
are not known.

The GFEM stencil can be adapted for solving the direct and adjoint variational TE and TM
problems under consideration which contain the differential operator1+2i α∂x1+(k2−α2).
The domainÄ̃ is partitioned such that the rectangular mesh is uniform in thex1-direction
and piecewise uniform in thex2-direction and such that the discontinuities ofk lie on
mesh lines. For a solutionu of the TE or TM problem the function exp(i αx1)u solves the
Helmholtz equation1 + k2. Therefore we expect the discrete solutions to be combinations
of the discrete functions

vθ (ph1, qh2) = exp(i (k1 + α)ph1 + ik2qh2) with k1 = k cosθ, k2 = k sinθ,

and we implemented a GFEM with scaled versions of the stencil


exp(−i αh1)a3 a2 exp(i αh1)a3

exp(−i αh1)a1 a0 exp(i αh1)a1

exp(−i αh1)a3 a2 exp(i αh1)a3

 ,

where the coefficients are the solutions of (4.9). The scaling is necessary due to the jumps
of k and to the boundary conditions with the nonlocal operatorsT±

α . The best results were
obtained if the scaling is chosen such that the sum of the central row equals the diagonal ele-
ment of the GFEM with no pollution for the one-dimensional operator(d/dx)2+ (k2−α2).

The sparse structure of the matrix can be used to apply efficient direct or iteration methods
for solving linear systems. We use a block version of the so-called sweep method, which
utilizes the block-tridiagonal structure of the matrix and additionally the circulant properties
of the dense blocks. Since the matrices of the discretized variational problems are nonsym-
metric, we apply preconditioned GMRES-type and BiCGstab methods as iterative solvers.
For many technological relevant grating materials and wavelengths the optical indices do
not strongly jump. Therefore the corresponding equations with averaged wave numbersk
are good candidates for the preconditioner, which can be inverted very efficiently using
FFT.

After having solved the linear system corresponding to the GFE discretization of the vari-
ational equations, the diffraction efficiencies are determined from the Fourier coefficients
of the solution on0+ and0̃−. For the computation of the transmission efficiencies and the
solutions on the layer interfaces, which appear in the gradient formulae, we use a stable
recursive algorithm similar to that for evaluating the coefficientsγn.
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5. SOME NUMERICAL RESULTS

The method was used to evaluate the reflection and transmission efficiencies of binary
gratings on multilayer systems of different geometries and materials and it turned out to be
robust and reliable in both the TE and TM case. Compared with the usual FEM the obtained
results were accurate already for rather poor discretizations. In Fig. 4.1 we compare the
numerical values of some reflection and transmission efficiencies versus the square rootn
of the total number of grid points computed with the usual FEM and the GFEM on quadratic
meshes for a simple binary grating with the optical indexν = 2.5 situated on a layer with
ν = 3.5. In each case the GFEM results differ already forn = 40 only by 2% from the
corresponding values forn = 200, whereas the FEM results converge rather slowly to these
values.

Furthermore, we compared the results of our method with those obtained with other
methods which are known to provide reliable results for binary gratings (e.g., integral
equation or modal methods). As an example we give in Table I the zero order reflection
efficiencies of TM polarization for a simple binary grating calculated with different methods.
The grating consists of aluminium with the optical indexν = 0.47+ 4.8i for the given
wavelength of 436 nm, the grating periodd is equal to 1µm, the fill factor f = 0.5, and the
angle of incidenceθ = 0.

Table I compares the corresponding values of GFEM with an quadratic partitioning of
the rectangular domain withh1 = h2 = 10 nm for different heightsH of the binary structure
with the results of three other methods, taken form [26]. These methods are two modal
methods, AWG (analytic waveguide method), introduced in [3, 27] and the RCWA (rigorous
coupled-wave analysis) going back to [2] and essentially improved in recent years (cf. [6]).
The third method called IESMP is based on the integral equation method as described in
[5, 26].

FIG. 4.1. Comparison of some TE and TM reflexion and transmission efficiencies computed with FEM and
GFEM for a simple binary grating withν = 3.5 versus the square rootn of total grid points.
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TABLE I

Comparison of Zero Order TM Efficiency Computed with Different

Methods for Simple Aluminium Gratings for Normal Incidence

H/d AWG RCWA IESPM GFEM

0.1 0.0186 0.0173 0.0190 0.0190
0.2 0.8532 0.8539 0.8529 0.8533
0.3 0.0095 0.0096 0.0100 0.0098
0.4 0.8079 0.8080 0.8095 0.8095
0.5 0.0440 0.0445 0.0465 0.0452
0.6 0.7000 0.7000 0.7068 0.7027
0.7 0.1497 0.1496 0.1511 0.1506
0.8 0.6250 0.6234 0.6277 0.6257
0.9 0.2500 0.2503 0.2503 0.2504
1.0 0.4810 0.4808 0.4840 0.4816

Note.The parameters areλ = 436 nm,d = 1µm, ν = 0.47+ 4.8i and f = 0.5.

Note that the convergence of finite element methods is not restricted to the case of
binary gratings considered here. These methods can handle very general geometries of
the diffraction structures and complex materials. The implementation of effective solvers
is simple, especially for problems with polygonal interfaces between different materials
and the practical limits are determined only by the computer resources for solving the
corresponding linear systems of equations. The implementation of effective solvers for
the other methods in the case of more general diffraction problems is very complicated.
Moreover, a convergence analysis for these methods is not known at present. However,
for smooth interfaces and a small number of different grating materials integral equation
methods and the analytical continuation method [8] seem to be advantageous, whereas in the
case of rectangular interfaces the methods based on Fourier series or eigenmode expansions
give equivalent results.

The GFEM for solving direct and adjoint problems was integrated into a computer pro-
gram for the study of optimal design problems for binary gratings. By using the standard
algorithm of gradient descent local minima of functionals are determined, which charac-
terize desired optical properties. These functionals involve the Rayleigh coefficients of the
discrete models on a given partition of the domainÄ for a prescribed range of incidence
angles or wavelengths. Of course, the gradients are computed by discretized versions of the
formulae given in Section 3. Corresponding to the gradients the thicknesses of the layers
and the shape of0 are varied within a class of admissible parameters, which are restricted
by certain technological constraints.

Certainly better minimization algorithms exist, for example conjugate gradient methods
or methods based on higher order derivative information. The design and analysis of different
minimization methods for coated binary gratings will be the topic of future research.

In the following we provide some results of the optimization of a polarisation grating,
beam splitters and high reflection mirrors.

The first example concerns the application of metallic subwavelength gratings for po-
larization devices. Figure 4.2 shows the results for the optimal design of such a zero order
grating that should maximize the reflection of TE polarisation and the transmission of TM
polarisation over the range of wavelengths from 450 to 633 nm. Here the refractive index of



           

622 ELSCHNER AND SCHMIDT

FIG. 4.2. Optimal design for a simple polarisation grating for the range of wavelengths from 450 to 633 nm.
Grating parameters ared = 200 nm,H = 150 nm, andf = 0.3.

aluminium is given as a function of the wavelength and the grating period is fixed to 200 nm.
The optimization results in the width of the bar of 60 nm and in the height of 150 nm.

Next we provide the optimization results for some beam splitters. The illuminating un-
polarized wave withλ = 0.633µm is normally incident from a dielectric medium with
refractive indexν = 1.5315. Choosing the periodd = 1.266µm three diffraction orders
propagate with angles 0 and±30◦. The goal is

(a) to maximize the efficiencies of the orders±1
(b) to obtain maximal and equal efficiencies of all three orders

by optimizing the heightH and the fill factorf of the grating with one groove per period.
The results are depicted in Figs. 4.3a,b, the obtained values are

(a) H = 0.734µm, f = 0.72;
(b) H = 0.43µm, f = 0.58.

For the same parameters as before we seek a one-to-four beam splitter with the diffraction
angles±14.5◦ and±30◦. Choosing the periodd = 2.532µm, nine diffraction orders propa-
gate; the goal is to maximize the efficiencies of the orders±1 and±2. To obtain a satisfactory
solution, it is necessary to use two grooves per period. For the optimal solution the height
of these grooves isH = 1.747µm, the scaled transition points are 0.0, 0.24, 0.38, 0.63
(Fig. 4.4).

For the same parameters as before we optimized a one-to-five beam splitter with the
diffraction angles 0◦, ±20.7◦, and±45◦. For the fixed grating periodd = 1.79µm the opti-
mization provides the height of the optimal groovesH = 0.77µm and the scaled transition
points 0.0, 0.12, 0.36, 0.76 (Fig. 4.5).
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FIG. 4.3. (a) Optimal design of a 1-to-2 beam splitter. The parameters areλ = 0.633µm, d = 1.266µm,
H = 0.734µm, and f = 0.72. (b) Optimal design of a 1-to-3 beam splitter. The parameters areλ = 0.633µm,
d = 1.266µm, H = 0.43µm, and f = 0.58.

The next problem concerns the design of a zero-order copper grating (ν = 12.7+51.1i ) as
circular polarizer for CO2 laser withλ = 10, 6µm such that in the range of incident angles
θ ∈ (29◦, 31◦) the efficiencies of the reflected TE and TM polarized wave are maximal and
the phase difference between them is close toπ/2. Here one has to minimize the functional
(3.3) extended over the range of incident angles, which possesses many local minima. One
of the reasonable geometries isd = 3.0µm, H = 1.65µm, and f = 0.24. Table II contains
the computed values.

Finally we consider a high reflection grating on top of a quarter-wave system of 15 layers
for the wavelengthλ = 1.45µm. The even homogeneous-layer parameters areν = 1.45 and
hj = 248 nm, with the odd homogeneous-layer parameters beingν = 2.3 andh j = 157 nm.
The substrate is quartz withν = 1.45. Without any grating structure the reflection efficiency
is almost 100% (99.76% in normal incidence). The problem is to find a grating surface in
an additional quartz layer on the top in order to maximize the TE reflection of order−1 in
Littrow mounting forθ = 20.4◦. Correspondingly, the period of the grating isd = 2.06µm.
Optimal values were obtained for the thickness of the additional quartz layer of 866 nm,
the binary grating within this layer has the heightH = 804 nm and the fill factorf = 0.56.
In that case the efficiency of order−1 amounts to 99.42%.

6. CONCLUSION

In this paper we focused on optimal design problems for binary gratings, using exact
formulae for the gradients of the cost functionals and a fast and reliable method for the
numerical solution of direct and adjoint diffraction problems. The latter method is based
on a variational formulation and combines a finite element method in the grating structure

FIG. 4.4. Optimal design of a 1-to-4 beam splitter for the wavelengthλ = 0.633µm. Grating parameters are
d = 2.532µm andH = 1.747µm. The distribution of the transition points is 0., 0.24, 0.38, 0.63.
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TABLE II

Zero Order Efficiencies and Phase Difference

for Circular Polarizer

θ TE TM Phase

29.0 97.50 95.72 90.72
29.2 97.50 95.72 90.58
29.4 97.51 95.72 90.45
29.6 97.51 95.72 90.32
29.8 97.52 95.72 90.18
30.0 97.52 95.72 90.04
30.2 97.53 95.72 89.91
30.4 97.53 95.72 89.77
30.6 97.54 95.72 89.63
30.8 97.54 95.72 89.49
31.0 97.55 95.72 89.35

Note.The parameters areλ = 10, 6µm,ν = 12.7+51.1i ,
d = 3µm, H = 1.65µm, and f= 0.24.

with Rayleigh series expansions in the layer system below the grating. This approach is not
restricted to binary profiles, but allows the numerical treatment of rather general diffraction
structure, together with a complete convergence analysis.

We proposed a generalized finite element method (GFEM) with minimal pollution, which
provides highly accurate numerical results in the computation of diffraction efficiencies
for both the TE and TM mode. In particular, for TM diffraction problems having a mild
singularity of the solution, the convergence performance of our method was comparable
with that of the rigorous coupled-wave analysis of [6] and the integral equation method of
[5]. Moreover, accurate numerical results can be obtained even in the presence of strong
singularities of the solution. We expect that the approach can be also extended to the more
general case of conical diffraction and biperiodic gratings.

To solve optimal design problems for binary gratings by gradient descent we presented
explicit formulae for the gradients with respect to the parameters of the grating profile and the
thicknesses of layers. These formulae involve the solutions of direct and adjoint TE and TM
problems and reduce considerably the computational costs compared to simple difference
approximations of the gradients. The GFEM and the gradient formulae were integrated into
a computer program to find the optimal design of binary gratings with desired phase or
intensity pattern for a given range of incidence angles or wavelength. Several numerical

FIG. 4.5. Optimal design of a 1-to-5 beam splitter for the wavelengthλ = 0.633µm. Grating parameters are
d = 1.79µm andH = 0.77µm. The distribution of the transition points is 0., 0.12, 0.36, 0.76.
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examples including polarisation gratings and beam splitters successfully demonstrate the
efficiency of the algorithm.
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