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In this paper we describe recent developments in the application of mathematical
and computational techniques to the problem of designing binary gratings on top
of a multilayer stack in such a way that the propagating modes have a specified
intensity or phase pattern for a chosen range of wavelengths or incidence angles. The
diffraction problems are transformed to strongly elliptic variational formulations
of quasi periodic transmission problems for the Helmholtz equation in a bounded
domain coupled with boundary integral representations in the exterior. We obtain
analytic formulae for the gradients of cost functionals with respect to the parameters
of the grating profile and the thickness of the layers, so that the optimal design
problems can be solved by minimization algorithms based on gradient descent. For
the computation of diffraction efficiencies and gradients the variational problems
are solved by using a generalized finite element method with minimal pollution.
We provide some numerical examples to demonstrate the convergence properties for
evaluating diffraction efficiencies and gradients. The method is applied to optimal
design problems for polarisation gratings and beam splitte399s Academic Press

Key Wordsdiffraction by periodic structures; Helmholtz equation; transmission
problems; nonlocal boundary conditions; optimal design; gradient formulae; gener-
alized FEM with minimal pollution.

1. INTRODUCTION

The practical application of diffractive optics technology has driven the need for m:
ematical models and numerical codes both to solve the full electromagnetic vector-
equations for complicated grating structures, thus predicting performance given the ¢
ture, and to carry out optimal design of new structures.

Within the so-called rigorous grating theory, which is based on Maxwell's equations,
riodic gratings can be modeled as quasi-periodic transmission problems for the Helm
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604 ELSCHNER AND SCHMIDT

equation in the whole plane. Special difficulties are associated with the numerical solus
of these problems due to the highly oscillatory nature of waves and interfaces. Vari
methods have been proposed to evaluate the solution for a given structure, i.e., to s
the direct diffraction problem. Among the most well known are modal expansion, diffe
ential and integral methods (cf. the classical monograph [1] and recent extensions
improvementsin, e.g. [2-7]). These methods turned out to be efficient for solving the dir
diffraction problem for certain classes of grating structures, but it is difficult to find ar
mathematical treatment of convergence in the literature. Such a convergence analysi
be found in the case of smooth interfaces between different materials for integral equa
methods and the analytical continuation method introduced in [8]. In the case of bin
structures, whose surface profile is given by a piecewise constant function, the mather
cal complexities are amplified by singularities of the solutions. Recently, a new variatio
approach was proposed (see [9—-10] and the references therein), which appears to be
adapted for the analytical and numerical treatment of very general diffraction structure:
well as complex materials and allows straightforward extensions to diffraction problel
for conical mounting and crossed gratings [11-12]. In particular, this approach is the b:
for the convergence analysis of finite element solution methods provided in [13-15]. "
note that in [16] a similar method was used for photolithography simulation on nonplat
substrate.

But it is more important that the variational approach leads to effective formulae for t
gradient of cost functionals arising in optimal design problems as shown in [17, 15], st
that gradient-based minimization methods can be used to find gratings with specified op
functions. There have been a number of papers from the engineering community that
concerned with the optimal design of periodic gratings. By far the greatest activity has b
in optimization for ray-tracing and phase-reconstruction techniques which are valid witl
the domain of Fourier optics. A few of these papers (e.g.[18-20]) are devoted to optimiza
problems using rigorous diffraction theory. However, the optimization procedures us
there are based only on the values of certain cost functionals; i.e., they require the solt
of a large number of direct problems and are therefore computationally expensive. M
advanced methods to find optimal solutions utilize, besides the values of cost function
also its gradients or even properties of higher order differentials. The simplest example
descent-type algorithms, which are computationally effective if explicit gradient formul
are available. But so far gradient formulas were obtained only for the TE case; see [.
where interface mixture problems have been studied. Sometimes the approximatio
gradients by simple difference quotients is used, which is, however, very inefficient fo
large number of parameters.

In the present paper we apply some mathematical results from [15] to the model prob
of designing binary gratings on top of a multilayer stack in such a way that the propagat
modes have a specified intensity or phase pattern for a chosen range of wavelengtl
incidence angles. First we present the variational formulations of the diffraction proble
for TE and TM polarization and give a summary of some existence and unigueness res
In Section 3 we consider a typical optimal design problem, formulate the cost functiol
and write down the formulae for the gradients with respect to the parameters of the gra
profile and the thicknesses of the layers. Then the optimal design problem can be so
by minimization algorithms based on gradient descent. For the computation of diffract
efficiencies and of the gradients we use a reliable numerical method which originates fi
the variational formulations. This method, which combines a generalized finite elem
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method in the grating structure with Fourier expansions in the multilayer system, is discu
in Section 4. It is known that the accuracy of the usual Galerkin FEM for the Helmhc
equation deteriorates for large wave numbers. More precisely, thenggdip' n, goes to
infinity with increasing wave number, wherg is the dimension of the finite element
space required to achieve a prescribed accuracy and the Galerkin—FE solution nee
dimensiomegy to get the same accuracy. This nonrobust behavior of the FEM with resy
to the wavenumber is called tpellution effect The goal of the generalized FEM (GFEM)
is to modify the entries of the FEM system matrix in such a way that the natiq/n,
increases as slowly as possible. Our construction of the GFEM with minimal pollut
extends a recent approach of [21] to problems with piecewise constant wave numbe
rectangular partitions and leads to essentially better numerical results than usual
Finally we provide some humerical examples to demonstrate the convergence propert
this method for evaluating diffraction efficiencies and gradients. The last section inclu
also several examples of optimal design problems including polarisation gratings and k
splitters.

2. VARIATIONAL FORMULATION OF THE DIRECT SCATTERING PROBLEM

Consider a binary grating of periat] with heightH and transition points at the top of
a stack of layers of thicknessles. The materials are nonmagnetic with the permeahility
and have the dielectric constaat§ he coordinate system is chosen such that the diffractit
problem is invariant in thes direction and that the; axis is parallel to the layers. Thus
the problem is determined by the functie¢xy, x2) which isd-periodic inx;. We assume
that the material above the grating profileis homogeneous with =¢* > 0. Below T
the material may be inhomogeneous and we assume that the fuaetien is piecewise
constant corresponding to the different layers and constant for the substrate. Furthe
suppose that the™ can be complex valued with laT >0 and Re~ > 0ifIme~ =0.

Assume that an incoming plane wave with time dependence-éxj) is incident in the
(X1, X2)-plane upon the grating from the top with the angle of incidehe& —x /2, 7 /2).
Then the electromagnetic field does not dependsrin either case of polarization, one
of the fieldsk or H remains parallel to the grooves and is therefore determined by a sir
scalar quantity = v(Xq, X2) (equal to the transverse componenkdh the TE case and to
the transverse componentldfin the TM case). The function satisfies two-dimensional
Helmholtz equations

Av + w?ugev =0 (2.2)

in the regions with constant permittivity, together with the usual outgoing wave condit
atinfinity. At the material interfaces the solutions are subjected to well-known transmis:
conditions. For TE polarisation the solution and its normal derivakiwehave to cross the
interface continuously, whereas in TM polarisation the produtd,v has to be continuous
(for more details cf. the classical monograph [1]).

The diffraction problems admit variational formulations in a bounded periodic cell whi
were introduced in [9, 10]. In the following denotes the piecewise constant functio
w (1o€)Y?. Above the profild it takes the constant valke = w (e ™)*?, whereas below
I it coincides with the piecewise constant function= w (e ~)Y/? (kg, k1, kz, andks in
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FIG. 2.1. Problem geometry.

Fig. 2.1). We assume that
Rek™ >0, Rek™ >0, Imk™ >0. (2.2)

Note thatk = wv (oeg)Y/?, Whereeq is the permittivity of the vacuum and= (¢/g)*/?
denotes the optical index. The incoming wave has the fdrs exp(iax; — i 8X2), where

a =k* sing, B =k* cosf. If we introduce two artificial boundarigs®™ = {x, = b*} lying
abovel” and below the layer structure, respectively, denoteothe rectanglg0, d) x
(b, b™) and define thd-periodic functioru = v exp(—iaX;), then the diffraction problem
for TE polarization can be transformed to a variational problenufor the rectangleR.
Multiplying the differential equation (2.1) by some smooth function, applying Green
formula, and taking into account the transmission conditions at the material interfaces
the outgoing wave condition dri*, it can be shown (cf. [10, 15]) that the diffraction problem
for TE polarization is equivalent to the variational equation

Bre(u, ) := /Vau Vo — /kzua‘i‘ /(Tju)(ﬁ—i—/(TJu)(Z
Q Q r+ r-

- —/Ziﬂ exp(—igbMp, Vo, (2.3)

I+
whereV, = (x4, dx,) := V +i(e, 0). The functionsT *u are defined ofr* as

[e.¢]

(TFu) (xa. b*) = = Y iBr0n explinKxy), (2.4)

nN=-—00

whereK = 2r/d andﬂf denote the Fourier coefficients ofx;, b*):

d

1
o = a/u(xl, b*) exp(—inKxy) dx;.
0
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The numbergZ are defined as
BE = Bi(e) == ((K5)? — aﬁ)l/z, 0 <argps <,

where as usual, = o + nK andk™ = k= (x1, b™).

The variational equation (2.3) should be satisfied for all test functjoeaﬂ;-lé(sz), that
is the function space of all complex-valued functignsvhich ared-periodic inx; and,
together with their first-order partial derivatives, square integrabke;isee [22] for the
variational approach to classical elliptic boundary value problems.

The variational formulation (2.3) is very useful, because the transmission and outg
wave conditions are enforced implicitly and it allows to seek the solution in the funct
spaceHg(Q), which is natural for second-order partial differential equations on nonsmo
domains. Here one can apply well established methods for the analysis and nume
solution of the diffraction problems.

Note that any solution of (2.3) satisfies B the boundary conditions

OnUlr+ + Tfulr+ = —2iBexp(—iBb"), daulr- + T, u|r- = 0. (2.5)

which implies the Fourier series expansion

u(x, bt = > Alexpigib™) explinKx;) + exp(—igb™),

N=-—00

o (2.6)
U(Xy, b7) = Z A exp(—iB, b)) explinK xy).
nN=—00
Thus, the operatorE;* are the Dirichlet-to-Neumann mappings,
IU*|re = =T u*|ps, (2.7

for functions of the form

uxy, Xp) = Z A exp(£i BExo) expiinK xy), X2 2b™.

N=—00

Similarly, the TM diffraction problem can be formulated as follows (cf. [10], [15]):

1 N — 1 _ 1 -
BTm(U, 90) = / @Vau . vaﬁo - / Uy +/ (k+)2(Ta+U)(p + / W(Tog U)fp
Q Q r+ =
2iB - 1
=— K2 exp(—igbTe Vo € Hy(R). (2.8)
r+

THEOREM1 [15]. Suppose that k satisfies conditi2). Then the sesquilinear forms
Bre and Bry are strongly elliptic over Iﬂ(Q).

Here we call a bounded sesquilinear faxtw -), given on some Hilbert spacg strongly
elliptic if there exist a complex numbaer, |¢| =1, a constant > 0, and a compact form
q(-, -) such that

Rea(4u, u) > cllull% —q(u,u) VueX.



608 ELSCHNER AND SCHMIDT

Based on the variational formulation of the diffraction problems and Theorem 1 t
following existence and uniqueness results can be established ([15], [9]):

1. The TE and TM diffraction problems admit solutians Hg(Q) for all w > 0 andb.
These solutions are unique for all but a sequence of countable frequencies— oo.

2. For TE polarisation the solutian(xs, X2) = Ey, (X1, X2) exp(—iax;) has square inte-
grable second-order partial derivativass HFZ,(Q).

3. Inthe TM case the solutian(xi, x2) = Hy, (X1, X2) exp(—iax;) may have singularities
at the corner pointstj, 0) and(t;, H) of the grating. More precisely, near corner points
there holdsu=r*f + g, wherer denotes the distance to the corner point, the expone
A with 0 < ReA < 1 is determined by the optical index of the grating material déng
are some smoother functions. In particular, if two materials with optical indicaadv,,
respectively, meet at some corner theis the solution with minimal positive real part of

the equation
; 2 2, 2\?
sin(A/2)\*  [vi+3
sin(zA) - v12 - v% '

Hence, the partial derivatives afare only of the fornr*~1f 4+ g, i.e. the electric field
componentsy, andEy, are strongly singular and the normal derivativeiain I does not
satisfy the Meixner condition, i.@,u ¢ L2(I"), in general.

4. Introduce the set of exceptional values (Rayleigh frequencies):

R(e) = {(w, 0) : An € Z such tha(nK + w(ne™)Y?sing)? = w’uet).

Iffor (wo, 60) ¢ R(¢) one of the diffraction problems is uniquely solvable, then the solutio
u depends analytically o andd in a neighbourhood of this point.

5. If one of the materials beloWis absorbing then the TE problem has a unique solutiol
for all frequencieso > 0.

6. If one of the layer materials is absorbing then the TM problem has a unique solut
for all frequencieso > 0.

7. Lete(x) > 0 for x € Q. Suppose that there existE R such that

d
<(Xz+f)€,v> >0 forallv>0.
8X2 L2(Q)

Then the TE diffraction problem is uniguely solvable &or- 0. (This condition is always
satisfied if only two materials are present.)

Note that the variational formulation of the diffraction problems and the validity of th
corresponding mathematical results are not restricted to binary or other rectangular gre
profiles. They remain valid for general piecewise constant funci@aisfying condition
(2.2); hence the presented approach is applicable to rather complex grating structures
here we focus on the case of binary profiles for which optimal design problems will |
considered.

Define the finite sets of indiceB* = {r € Z : BF € R}. Then the Rayleigh amplitudes
Af (r € PT) (resp.A” (r € P7)), which are called the reflection (resp. transmission) coef
ficients, correspond to the propagating modas. &ote thatP~ =@ if Im k™ (xq, b™) #0.
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The reflection and transmission coefficieds (r € P™) (resp.A; (r € P7)), which cor-
respond to the propagating modesupfire determined by the Fourier coefficientsuain
the artificial boundaries*:

Ay = —exp(—2ib™) + exp(—ipb")0Y, AF =exp(FiBEb*)0F, rePT\{0},reP.
(2.9)

The reflected and transmitted efficiencies are defined by

eEE = (B/B)|AE[, e™*t = (B /BIATEZ, &M~ = (kt/K 2B /B)IA 12

(2.10)

3. AN OPTIMAL DESIGN PROBLEM

A typical minimization problem occurring in the optimal design of binary gratings «
some multilayer system is the following. Assume that the period of the grating and the n
ber of transition points and of thin-film layers are fixed. For given numg€ts, c™™* ¢
{—1, 0, 1}, define the functional

3@ = (e ™M™ ) + Y (B e+ ™me™ ). (3.)

reP+ reP-

Note that the efficiencieg® are functions of the grating profilé and the layer interfaces
Aj. If we fix one transition point, at the origin the efficiencieg® are therefore functions
ofty, ..., tm_1, H, €1, ... £, (cf. Fig. 2.1). Now the minimization problem reads as follows

Find transition points?, ..., t2 ; and the height1° of the binary grating profil&°, as
well as thicknesses of the layer structure, such that

min J(E) = J(EY), (3.2)

(toseostmog, H g, ...l p)eK
whereK is some compact set in the parameter sgaEeP reflecting, e.g., natural con-
straints on the design of the grating and the thin-film layers. Note that the atfoiee-1
(resp.ct =1) in (3.1) amounts to maximizing (resp. minimizing) the efficiency of th
corresponding reflected or transmitted propagating mode of order

Other minimization problems:

1. If one wants to obtain prescribed values for certain reflection and transmission
ciencies, given by the index setts ¢ P* andl~ c P, the following smooth functional
can be useful:

Z <|erTE+ _ CrTE+|2 +|e™ - CrTM,+|2>

rel+

+> <|erTE” o R [ chM'*|2) — min.

rel-

2. The optimal design of a grating providing a given phase sghifftetween the th
reflected TE and TM mode can be performed using the functional

—elEF — g™t 4+ |ATEY —exp (p)A;rM’+’2 — min. (3.3)
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Obviously many other functionals are possible, especially if a corresponding optimizat
over a range of wavelengths or incidence angles is required.

Tofind local minima of these functionals, the method of gradient descent or other gradie
type methods can be applied. Thus we must calculate the gradidi&of for example,
which can be easily expressed in terms of the partial derivabye§™(T") (with respect to
the transition points,, ..., t, — 1, the heightH, and the layer thicknesses, given by the
coordinated;) of the reflection and transmission coefficients in both the TE and TM cas
Here we propose to use gradient formulae based on the solution of the direct problem
its adjoint, instead of simple difference quotients which are very expensive to compute
a large number of parameters.

The gradient ofJ(E) is given by

D;jJ(E) = Y 2087/ {c/""Re(A=*(E)D; AT (E))
rep+
+ M Re(AMF(E)D; AMH(E)) )

+ ) 287 /B {cF " Re(AFT(E)D; ATE(E))

repP-

+ (K 7k’ Re(AMT(E)D; AMT(8)) ) (3.4)

Once one has derived explicit formulae for those partial derivatives, it is possible
compute also the gradients for a much more general class of functionals involving
Rayleigh coefficients for a given range of incidence angles or wavelengths.

The formulae for all components of the gradientAf in the TE case take the form:

D|A*(E) = (—1)1’1(k§—(k*)z)/Uu_)idxg, j=1,...,m—-1,
Zj
DmAri(E) = (ks — (k+)2) /uu_}i Xm, (35)
Zm
Dinsj AE(B) = (K — kJ?H)/u@dxl, i=1....p
Aj

whereu is the solution to the TE diffraction problem (2.3) and the functienssolve the
adjoint TE problems,

exp(FipEb*
Bre(p, wy) = %/wexp(—ierl)dxl Vo € HY(Q). (3.6)
l—*i
HereXy, is the union of all upper horizontal segmentdgivhereas; (j=1,..., m—1)

denotes the vertical segment at the transition pginfFor the derivation of (3.5) and the

corresponding formula (3.7) below in the TM case, we refer to [15]. In the latter ca
the gradient formulae involve the partial derivatives of the solution of direct and adjoi
problems at the interfaces. If the optical index of the grating material is such that the solus
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u satisfies the Meixner condition then

D;AX(E) = (—1)1‘1(k3—(k+)2)/gr(u)~gr(wi)dx2, j=1,...,m—-1,
Z
DmAF(E) = (kg — (kH)?) / gru () - gru (ws) dx, (3.7)
Zm
Dy AS(E) = (kj — k) /grj () - grj(ws) dxe, i=1....p

Zj

Here,u is the solution of the direct TM problem (2.8), the functians solve the adjoint
problem

explFifbY)

Brum(p, w) = i /(pexp(—ierl)dxl Vo e HX(Q).  (3.8)
r‘i
and
r) = L kga u+8u+ -t k+a ul aeul
g - k+kg k+ X1,00 2]7 X2 EJ — k+kg kg X1,0¢ Els X2 El 3
r(u) = 1 ) u+ kga u+ _ 1 3 u_ k+a u_
g H - k+kg X1,00 ):m’ k+ X2 - - k+kg X1,0 va kg X2 - 3
gri(u) = (s u+ kj“a u+ RS (PO . NP
: Kikiva \ s K Kikjva \ 7 K Ly, )

where the plus (resp. minus) signs denote the one-sided limits as the interfaces ar
proached from the region above (resp. below).

If the Meixner condition is not fulfilled then the gradient formula has to be modified |
an additional term depending an

Concerning the solvability of the adjoint problems (3.6) and (3.8) the same existence
unigueness results as for the direct problems remain valid. This follows from the fact
the solutions of the adjoint TE or TM problem solve the corresponding diffraction probl
with the complex conjugate wave numbkiand a special radiation condition. For example
for w_ this condition takes the form

w_ (X1, X2) = Z Al exp(—i BFxo) explinKxy), Xz > b,

w_(Xq, X2) = Z A expli B x2) expinK xg) (3.9)
iC — . _
+ ——=exp(—i B x2) expirKxy), X2 <b
A B

with C = 1 for TE andC = (k*/k™)? for TM.
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We emphasis that in order to compute all partial derivatives of functionals arising in t
optimal design of binary gratings it is sufficient to solve the direct TE and TM diffractio
problem and only one corresponding adjoint problem. We demonstrate this for the functic
J(E) defined in (3.1).

From formulae (3.4), (3.5), and (3.7) we obtain by linearity that the components of t
gradient ofJ(E) are equal to

D;J(8) = (=1 "'Req (kg — (k)?) /uTEFdXﬁ /gr(uTM>~gr<wTM>de :

Zj Zj

DmJ(E) = Req (K3 — (k1)?) /uTEdeﬁ/ng(uTM)- gru(w™ydx, |5,
Zm

Zm

D J(B) = Req (kK — k7, ;) /uTEFdxﬁ/gri(uTM)- grjw™ydx |,

Aj Aj

i=1...,p

whereu™ andu™ are the solutions of the direct TE and TM problems, respectively, ar
w'E, w™ solve the following adjoint problems:

ot _ig+pt
Bre(p. w™® = > ¢/FTAET b exp:(jﬂm, b )/goexp(—ierl)dxl
rebP+ I+

+ Y qTE—F%/¢exp(—ierl)dxl, (3.10)
a

reP-

o+ _ig+tpt
Bru(p, w™) = > g™+ AT+ 2P exp:;ﬂu?, b )/wexp(—ierl)dxl
reP+ h

V2 ey B~
. Z M- ATV~ 26 (kd)ﬂ(i)ip)’(z'ﬁf b )/wexp(—ierl)dxl
Z

reP-

Vo € Hy(Q). (3.11)

Here AT+ and A™* denote the Rayleigh amplitudeswf® andu™, respectively.

Note that for simple difference approximations of the gradient the number of the dir
problems to be solved is at least equal to the number of optimization parameters, whe
the computational costs for solving adjoint and direct problems are the same.

4. NUMERICAL METHOD AND IMPLEMENTATION

Having described the variational formulation and some basic mathematical propertie
the direct diffraction problems as well as the gradient formulae and the variational equati



OPTIMAL DESIGN OF BINARY GRATINGS 613

of the adjoint problems, we now consider the numerical solution method of these variati
problems.

The proposed method combines a finite element method (FEM) in the grating reg
where the solutions are not smooth, with Rayleigh series expansions of the solution w
the different layers below the grating.

As discussed in Sections 2 and 3 the direct and adjoint problems (2.3), (2.8), (3.10),
(3.11) have the form: find Hg(Q) satisfying the equations

a(u, ¢) = (f.¢) forallpeHy(Q), (4.1)

wherea(u, ¢) is a strongly elliptic sesquilinear form, arid, ¢) stands for a linear and
continuous functional on the function spadé(sz).

Choosing a sequence of partitiof@,} of @ with the discretization parametérand
correspondingly a sequen¢&"} of finite-dimensional subspaces br;(sz), the strong
ellipticity implies that all invertible problems under consideration lead to uniquely solval
linear systems of the form

a(un, ¢n) = (f,¢n) forallgne S, (4.2)

if his sufficiently small. Moreover, the approximate solutions converge to the correspont
exact solution in the norm of the function spaéé(sz) with optimal order.

In the case that the grating is situated on top of a multilayer stack, one can reduc
integration domairf2 used in the FE solution by taking into account that the solution
smooth within the layers. We introduce a new artificial boundary= {x, = b~} into the
first layer,¢; < b~ <0 ( cf. Fig. 2.1), and new nonlocal boundary operatbf§ and T
which model the layer system beldw', together with the radiation condition fas < b~

In any layer the solution of the corresponding Helmholtz equation can be written as

o0
U(Xq, Xp) = Z (Al exp(—iBix2) + Blexpiplx)) expinKxy), £€j_1 <X < ¢j,
n=—o00

whereg) = (k% — (n+ «)®)*?, and we seto=0. The transmission conditions at each o
the interfaces connect the coefficienss,, Bl) and (A1, BJ*1) via 2 x 2 transmission
matrices. Since the radiation condition (2.6) implggs= 0, one gets explicit formulae for
the numbersy, connecting thath Fourier coefficient of a solution and its normal derivativ
onl—:

2
1 ~
Ui = — Zi)/nﬂn exp(inKx1), where(, = 5 / u(xe, b)) exp(—inKxy) dx.
0

neZ

The coefficients, are different for TE and TM polarization, but it can be easily seenthat th

converge tg8t = (k2 — a?)¥/?, i.e.|yn — Bl — 0 as|n| — occ. For evaluating these scalars

one can use a recursive algorithm which is numerically stable for any number of layers,

there is no limit in layer thickness. Matrix algorithms of this type are widely used in otf

numerical methods for analyzing layered structures (see [7] and the references therei
Thus, if we define nonlocal boundary operatorson

TIEu=— ZiynTEOn expinKxy), T/Mu=— ZiynTMﬂn exp(inK x1),

nezZ nezZ
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the direct problems (2.3) and (2.8) are equivalent to the variational equations on the sm:
rectangle2 = (0, d) x (b~, bt),

Bre(u, ¢) = / V- Vag — / Kug + / (Trug + / (FTeu) ¢
Q r+

Q r-

(4.3)
= _/2i,3 exp(—ipbN)e Vo € H (),

r+

respectively

- _ 1 _ _ 1 1 e —
BTM(uv 90) = / Evutu : Vvt(/) - /U(p + / (k+)2 (Tot U)(p + / k_JZ-(Ta U) %
s & r+ -

(4.4)

_ _/ (il+ﬁ)2 exp—ipbHg Vg e Hi).
r+

The adjoint problems (3.6) and (3.8) are reduced analogously to variational formulatic
on €2, but note that fow_ the right-hand sides change according to the layer structure.

Duetothe simple geometry of binary gratings itis quite natural to choose as finite eleme
piecewise bilinear functions on a uniform rectangular partition§~2@£ (0,d) x (b, b").
This leads to a linear system with a block-tridiagonal matrix. The nonlocal boundary ter
in the sesquilinear forms imply that the first and the last block of the main diagonal are fu
occupied matrices, whereas the remaining blocks are sparse.

Let us note that the computation of these nonlocal terms can be performed very efficie
with an accuracy comparable with the computer precision. Since the traces of the fi
element functions ofi* are piecewise linear periodic functions with uniformly distributed
break points, it is possible to use recurrence relations for the Fourier coefficients of sp
functions and convergence acceleration methods.

If the artificial boundanyi™* is divided intom subintervals of equal length and the basis
of hat functiong¢; } is used, then the form

/(Ta+<pp)(p_qul (4.5)
r+

corresponds to am x m circulant matrix with the eigenvalues

sin(nlf)/fﬂ))4 i Binrp

_— =1...,n—1.
s m( + p/m)4’ P SRR

0= —idB, 1= —2id(

=—00

Thus, one only has to expand

() e (o))

with respect to powers df + p/m| and to use fast computation of the generalized zet
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function
C(X,s) = Z(r +x)7S.
r=0

Since the scalarg, converge very fast tg?, for the computation of the forms

/(fIEQDp)QD_qul, /(flep)w_qul,

r- r-

one has to compute only a few of these coefficients and apply the summation me
mentioned before.

Thus the discretization error of the direct and adjoint problems is mainly determil
by the approximation error of the solution with bilinear finite elements. There hold 1
following convergence results:

THEOREM 2 [15]. (@) If the TE problem(2.3) has a unique solution, then for all suffi-
ciently small h> 0 the FE discretization of2.3) and (3.10)are uniquely solvable and the
approximate solutions converge to the corresponding exact solution in the norfi®f L
with the optimal rate @h?).

(b) If the TM problem(2.8) has a unique solution, then for all sufficiently smat 9 the
FE discretization 0{2.8) and (3.11)are uniquely solvable and the approximate solution
converge to the corresponding exact solution with the ratg?®.

Together with error estimates in the norm of the function spﬂa&:(@) itis easy to derive
similar estimates for the approximation of the diffraction efficiencies and the gradient:
the minimizing functionals.

As mentioned in the Introduction usual FE approximations of the Helmholtz equat
involve besides the approximation error also the pollution error which increases, toge
with the wave number and enlarging domains. For example, due to [23] piecewise linea
methods provide the suboptimal discretization error of the far¢h?k®+), wherea > 0
depends on the domain and the boundary conditions. Roughly speaking, the pollution
is caused by the well-known fact that the discretization of the Helmholtz equation with
wave numbek results in an approximate solution possessing a different wave nugber
In one-dimensional problems, for example, the usual piecewise linear FE solution of
equationu” + k?u =0 on a uniform grid has the discrete wave number

2 3h2
kn = %arccosz(;Tm =k - % + O(k°h%).
It turns out that this “phase lag” leads to the suboptimal error estimate mentioned above
the one-dimensional case one can easily define afinite element discretization with vani:
phase lag by introducing a modified wave number. So the FE solution of the equation

6(1 — coskh)

1 [ 20, ith k = o .o
u”+ (k(h)u=0 withk(h) = h2(2 + coskh)

has the wave numbérand, forh — 0, the corresponding solutions converge to the exa
solution with the orde((hk)?) (cf. [21]). Thus, in the one-dimensional case it is poss
ble to construct a generalized FEM without pollution by modifying the evaluation of t
sesquilinear form.
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Several approaches designed to improve the numerical phase accuracy of FEM in hi
dimensions have been proposed in recent years (cf. [24] and the references therein). |
ever, as shown in [25], it is not possible to eliminate the pollution in the FE error by a
modification of the evaluation of the sesquilinear form. Therefore we introduce a gen
alized FEM with minimal phase lag which already for rather poor discretizations of tl
domain$2 provides excellent results compared with the usual FEM for both the TE a
TM modes. Here we apply and extend the approach of [21] to design a so-called GF
with minimal pollution ensuring that the wave number of the approximate solution almc
coincides with the givek for piecewise uniform rectangular partitionsf

To fix the idea, consider on a rectangular mesh of @izeh,) the bilinear FE discretiza-
tion of the Helmholtz equatiomu + k?u = 0 with constank in some interior node. The
corresponding matrix has a stencil of the form

az A a3
a a
az d ag
with the coefficients
_ 4(h'f + h§) B 4k2h;h, ar — h2 — 2h3 B k2h;h,
3h;h, 9 7 3nih, 9
(4.6)
a = h% B 2h% _ k2|‘11"12 _ _h% + h% _ k2h1h2
2= Tanh, 9 ° BT "emnh, 36

Since the function exjpkix; + ikaxz) with ky =k cosh, ko =ksing, 6 €[0, 2], solves
the Helmholtz equation, we expect that a proper discretization of this equation at in
points should annihilate the grid functiong(phy, ghy) = expikyphy + ikoghy) for all

6 € [0, 2]. But the application of the FEM stencil to the discrete functipmesults in

expliki phy + ikogh) (a9 + 281 cogkihy) + 2a; cogkahy) + 4ag cogkihg) cogkahy))

at the grid point(phy, ghy). Thus, the grid function, does not satisfy the usual FE dis-
cretization of the Helmholtz equation at interior nodes. The idea of [21] was to modi
the coefficientsy; of the interior stencil such that its application to the discrete function
vp vanishes. This means, the ellipSgn,(0) = (khy cosd, khy sing), 6 € [0, 2], should
belong to the set of roots of the symbol function associated with the stencil

G(&1, &) 1= @ + 2a1 CO9&1) + 23, COY€) + 4ag cog&7) COYE). 4.7)

However, for any choice of the coefficierds . . . , ag the zero set of the functioB (&1, &)
does not contain any ellipse. Therefore, one has to look for a stencil with the property 1
the roots of the corresponding symbol are as close as possiiigj@sh;, h, — 0. Once

qy is fixed, the coefficienta;, a,, andas will depend orkh; andkh,, and we are interested
in analytic expressions for them. Let us denoteNjy, the set of roots of the symb@
lying in some rectanglé—kh; — ¢, khy + ¢) x (—=khy — ¢, khy + ¢), wheree > 0 is chosen
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such thatVi,h, is simply connected. Using the results obtained in [25] for the baseh,,
one can show that the distance betwdég,, and&,, defined by

Dhhy, = max m|n Enyh, (0) —

hih, = max . mi ’ hahy (0) — &|

can be taken as a measure for the approximation quality of the GFEM. In patrticular, g
some interior stencil, there exist boundary value problems for the Helmholtz equation ¢
that the error between the exact solution and the GFEM solution can be estimated in
special norm from below by

lu — ugrell? > ch™ Dp,p,, (4.8)

where we seh = \/h;h, (compare [21, 25]). To find a stencil providing asymptotically th
minimal distanceDy, n,, we use the fact that the asymptotics
erp)ax |G(khy cosh, khy sing)| = O((kh)"), Dhjh, = O((kh)*1)
€
are equivalent. This can be easily seen if(&bs cosé + r1) and cogkh, sind +ry) are
expanded with respect to the distance parameteamdr,. Therefore we determine the
coefficientsay, ap, andag in such a way that asymptotically may »,119(60)| is minimal.

Here g denotes ther-periodic functiong(0) = G(kh; cost, kh, sing) with the Fourier
series

9(0) = Go/2+ > _ Gom CO2MA).

m=1

Note thatin the cade; = h, the functiong has even the period/2. The Fourier coefficients
of g can be obtained by using the formulas

%/cos(acos@)cos(Zm@) do =(—1)" o (a), %/cos(bsine)cos(Zme)dH = Jom(b),
0 0

b

1 . a
— / cogacosd) cogbsing) cog2me) dd = Jom(v/ a2 + b?) cos<2m arctan5>,
T
0
with the first kind Bessel functiody. Thus, the Fourier coefficients have the asymptotic:

(khy)®™ + (khp)2m
2m 22m(2m)!

for small kh; andkh,

if a,ap, a3=0(1). Consequently, the functiong with asymptotically minimal
maxeo,2.119(0)| is found if, for givenay, the values ofy, ay, andaz are chosen such
that the first three Fourier coefficients gfvanish,§,=§, =98, =0, which ensures that
MaX<(o,2r119(0)| = O((kh)®). Introducing the function

. (="
jk(X) 1= 2K (x)/x* = P r———
nz:(:) 2'nl(n + k)!
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the corresponding linear system can be written in the form

jo(khy)ag + jo(khp)az + 2jo(ky/hZ 4 h3)ag = —ag/2

h?ja(khyag — h3ja(khp)ap + 2(h2 — h3) j2(ky/h? + h3)ag = 0 (4.9)
h?ja(khpay + h3ja(khp)a + (207 — 12h2h2 + 2h3) j4(ky/hZ + h3)as = O.
Note that in the case of a quadratic partitibn= h,, the solution of (4.9) satisfieg = ay,
and there holds even mayo 2.119(8)| < O((kh)®).
The distance between the ellipSgn, and the zero set of the symbol functiGiés, &)

associated with the solution of (4.9) can be estimated similarly to the technique of [25]
the casédh; = h,. One uses an expansion of the zeroe&af the form

& =khy <1 +) rm®. q)(kh)z”‘) cost, & =kh, (1 + ) rm®. q—l)(kh)2m> sineg,
m=1 m=1

whereq = /h1/h,. From the Taylor series expansion®fone deduces th& (£;, &) =0
in a neighborhood of the ellipse if

ri0,q) =0,

_@*-gcos®
200.9 = "5360

_(@°+qg®cos® (@°—gq®cos®  (q°—qA(Q*—q*cosd
0.0 = "Ieigoes T 193536 737280

Note that for the usual bilinear FEM stencil with the coefficients (4.6) there holds

q+9*t  @*+a® d?+q?* @ +qg°-2q+qgh))cosd

0.0 =g~ 54 24 192
N @*-q3-20*-qg?)cos?
48 :
Since

’

D < max
haha 0€[0,27]

D rm(@, ) (khy> ™
m=1

for the stencil of the GFEM one obtains the estimate

1 3/2
Diyh, < F360k5|h§ — h3|(hZ +h3)”" + O((kh)")

in the case of rectangular partitions, and for quadratic partitions one even has the impre
estimate obtained already in [21]

1 (kh)” + O((kh)®),

Dy <
774144
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whereas in any case the FEM stencil admits the lower bound
1 3 5
Diyh, = 2—4(kh) + O((kh)?).

Arigorous analysis for the convergence of GFEM in two-dimensional problems simila
Theorem 2 is not known up to now. For the special case of corlstart Dirichlet boundary
conditions one can show by using corresponding results for finite difference methods
the GFE discretization is uniquely solvable for sufficiently snialland h, and that it
providesh? convergence in the2-norm. However, the dependenceloaf the constant in
this error estimate is an open problem, so that estimates from above corresponding to
are not known.

The GFEM stencil can be adapted for solving the direct and adjoint variational TE and
problems under consideration which contain the differential operate?i o dy, + (k2 —a?).
The domair2 is partitioned such that the rectangular mesh is uniform inxthdirection
and piecewise uniform in th®,-direction and such that the discontinuitieslofie on
mesh lines. For a solutiom of the TE or TM problem the function exjaxx;)u solves the
Helmholtz equatiom\ + k?. Therefore we expect the discrete solutions to be combinatic
of the discrete functions

ve(phy, ghy) = exp(i (k; + @) phy +ikaghy)  with k; = kcost, k, = ksing,
and we implemented a GFEM with scaled versions of the stencil

exp(—iahl)ag ao EX[XiOlhl)ag
exp(—iah))ag ay explieh))a; |,
exp(—iozhl)ag as exp(iahl)a3

where the coefficients are the solutions of (4.9). The scaling is necessary due to the j
of k and to the boundary conditions with the nonlocal operafgrsThe best results were
obtained if the scaling is chosen such that the sum of the central row equals the diagonze
ment of the GFEM with no pollution for the one-dimensional operédgd x)? + (k% — a?).

The sparse structure of the matrix can be used to apply efficient direct or iteration met
for solving linear systems. We use a block version of the so-called sweep method, w
utilizes the block-tridiagonal structure of the matrix and additionally the circulant proper
of the dense blocks. Since the matrices of the discretized variational problems are non
metric, we apply preconditioned GMRES-type and BiCGstab methods as iterative sol
For many technological relevant grating materials and wavelengths the optical indice
not strongly jump. Therefore the corresponding equations with averaged wave nkmb
are good candidates for the preconditioner, which can be inverted very efficiently u:
FFT.

After having solved the linear system corresponding to the GFE discretization of the \
ational equations, the diffraction efficiencies are determined from the Fourier coefficie
of the solution o™+ andI*~. For the computation of the transmission efficiencies and t
solutions on the layer interfaces, which appear in the gradient formulae, we use a s
recursive algorithm similar to that for evaluating the coefficients
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5. SOME NUMERICAL RESULTS

The method was used to evaluate the reflection and transmission efficiencies of bir
gratings on multilayer systems of different geometries and materials and it turned out tc
robust and reliable in both the TE and TM case. Compared with the usual FEM the obtai
results were accurate already for rather poor discretizations. In Fig. 4.1 we compare
numerical values of some reflection and transmission efficiencies versus the square r
of the total number of grid points computed with the usual FEM and the GFEM on quadre
meshes for a simple binary grating with the optical index 2.5 situated on a layer with
v=23.5. In each case the GFEM results differ already riee 40 only by 2% from the
corresponding values for= 200, whereas the FEM results converge rather slowly to the:
values.

Furthermore, we compared the results of our method with those obtained with ot
methods which are known to provide reliable results for binary gratings (e.g., integ
equation or modal methods). As an example we give in Table | the zero order reflect
efficiencies of TM polarization for a simple binary grating calculated with different method
The grating consists of aluminium with the optical index0.47+ 4.8i for the given
wavelength of 436 nm, the grating peridds equal to lum, the fill factor f = 0.5, and the
angle of incidencé =0.

Table | compares the corresponding values of GFEM with an quadratic partitioning
the rectangular domain witly = h, = 10 nm for different heightsl of the binary structure
with the results of three other methods, taken form [26]. These methods are two mc
methods, AWG (analytic waveguide method), introduced in [3, 27] and the RCWA (rigoro
coupled-wave analysis) going back to [2] and essentially improved in recent years (cf. |
The third method called IESMP is based on the integral equation method as describe
[5, 26].

'S
o

TMT-1,FEM —

TET -2, FEM  =-een ]
TET -2, GFEM oo

TMR O, FEM  ~om
TMR 0, GFEM -
TER-1, FEM === .
TER -1, GFEM -+

&
o
T

W
o«
T

W
o
T

Efficiency (%)

n
v
T

20 |

0 1 1 1 1

150 200
square root of total grid points

FIG. 4.1. Comparison of some TE and TM reflexion and transmission efficiencies computed with FEM a
GFEM for a simple binary grating with= 3.5 versus the square rootf total grid points.
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TABLE |
Comparison of Zero Order TM Efficiency Computed with Different
Methods for Simple Aluminium Gratings for Normal Incidence

H/d AWG RCWA IESPM GFEM

0.1 0.0186 0.0173 0.0190 0.0190
0.2 0.8532 0.8539 0.8529 0.8533
0.3 0.0095 0.0096 0.0100 0.0098
0.4 0.8079 0.8080 0.8095 0.8095
0.5 0.0440 0.0445 0.0465 0.0452
0.6 0.7000 0.7000 0.7068 0.7027
0.7 0.1497 0.1496 0.1511 0.1506
0.8 0.6250 0.6234 0.6277 0.6257
0.9 0.2500 0.2503 0.2503 0.2504
1.0 0.4810 0.4808 0.4840 0.4816

Note.The parameters ave=436 nm,d=1um,v=0.47+ 4.8 andf =0.5.

Note that the convergence of finite element methods is not restricted to the cas
binary gratings considered here. These methods can handle very general geometr
the diffraction structures and complex materials. The implementation of effective sol
is simple, especially for problems with polygonal interfaces between different mater
and the practical limits are determined only by the computer resources for solving
corresponding linear systems of equations. The implementation of effective solvers
the other methods in the case of more general diffraction problems is very complice
Moreover, a convergence analysis for these methods is not known at present. How
for smooth interfaces and a small number of different grating materials integral equa
methods and the analytical continuation method [8] seem to be advantageous, whereas
case of rectangular interfaces the methods based on Fourier series or eigenmode expa
give equivalent results.

The GFEM for solving direct and adjoint problems was integrated into a computer |
gram for the study of optimal design problems for binary gratings. By using the stanc
algorithm of gradient descent local minima of functionals are determined, which cha
terize desired optical properties. These functionals involve the Rayleigh coefficients o
discrete models on a given partition of the dom@irfor a prescribed range of incidence
angles or wavelengths. Of course, the gradients are computed by discretized versions
formulae given in Section 3. Corresponding to the gradients the thicknesses of the |
and the shape df are varied within a class of admissible parameters, which are restric
by certain technological constraints.

Certainly better minimization algorithms exist, for example conjugate gradient meth
or methods based on higher order derivative information. The design and analysis of diffe
minimization methods for coated binary gratings will be the topic of future research.

In the following we provide some results of the optimization of a polarisation gratir
beam splitters and high reflection mirrors.

The first example concerns the application of metallic subwavelength gratings for
larization devices. Figure 4.2 shows the results for the optimal design of such a zero ¢
grating that should maximize the reflection of TE polarisation and the transmission of
polarisation over the range of wavelengths from 450 to 633 nm. Here the refractive inde
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FIG. 4.2. Optimal design for a simple polarisation grating for the range of wavelengths from 450 to 633 n
Grating parameters ate=200 nm,H =150 nm, andf =0.3.

aluminium s given as a function of the wavelength and the grating period is fixed to 200 r
The optimization results in the width of the bar of 60 nm and in the height of 150 nm.

Next we provide the optimization results for some beam splitters. The illuminating u
polarized wave withh =0.633um is normally incident from a dielectric medium with
refractive indexv =1.5315. Choosing the period=1.266.m three diffraction orders
propagate with angles 0 aae30°. The goal is

(a) to maximize the efficiencies of the orderd
(b) to obtain maximal and equal efficiencies of all three orders

by optimizing the heighH and the fill factorf of the grating with one groove per period.
The results are depicted in Figs. 4.3a,b, the obtained values are

(@) H=0.734um, f =0.72;
(b) H =0.43m, f =0.58.

For the same parameters as before we seek a one-to-four beam splitter with the diffrac
anglest14.5° and+30°. Choosing the period = 2.532m, nine diffraction orders propa-
gate; the goalis to maximize the efficiencies of the orderancd-2. To obtain a satisfactory
solution, it is necessary to use two grooves per period. For the optimal solution the he
of these grooves i$l =1.747um, the scaled transition points ared00.24, 0.38, 0.63
(Fig. 4.4).

For the same parameters as before we optimized a one-to-five beam splitter with
diffraction angles 0, £20.7°, and+45°. For the fixed grating period = 1.79 um the opti-
mization provides the height of the optimal groo¥¢s= 0.77 um and the scaled transition
points Q0, 0.12, 0.36, 0.76 (Fig. 4.5).
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v = 1.6315 v =10 =1.5315 =1.0
L 435 % ’ Y 293 %
_ 2.3 % — 28.5 %
a E— 435 % b 29.3 %

FIG. 4.3. (a) Optimal design of a 1-to-2 beam splitter. The parameters.&€.633um, d =1.266um,
H =0.734um, and f =0.72. (b) Optimal design of a 1-to-3 beam splitter. The parameters &r8.633.m,
d=1.266um, H=0.43um, andf = 0.58.

The next problem concerns the design of a zero-order copper gratingjZ. 7+ 51.1i ) as
circular polarizer for C@laser withA =10, 6 um such that in the range of incident angle:
0 € (29, 31°) the efficiencies of the reflected TE and TM polarized wave are maximal
the phase difference between them is close/®. Here one has to minimize the functiona
(3.3) extended over the range of incident angles, which possesses many local minima
of the reasonable geometrieglis- 3.0 um, H = 1.65um, andf = 0.24. Table Il contains
the computed values.

Finally we consider a high reflection grating on top of a quarter-wave system of 15 lay
for the wavelengthh = 1.45um. The even homogeneous-layer parameters aré.45 and
h; =248 nm, with the odd homogeneous-layer parameters being.3 andh; =157 nm.
The substrate is quartz with= 1.45. Without any grating structure the reflection efficienc
is almost 100% (99.76% in normal incidence). The problem is to find a grating surfac
an additional quartz layer on the top in order to maximize the TE reflection of ertiém
Littrow mounting ford = 20.4°. Correspondingly, the period of the gratinglis- 2.06 um.
Optimal values were obtained for the thickness of the additional quartz layer of 866
the binary grating within this layer has the heigiht= 804 nm and the fill factof = 0.56.

In that case the efficiency of orderl amounts to 992%.

6. CONCLUSION

In this paper we focused on optimal design problems for binary gratings, using e
formulae for the gradients of the cost functionals and a fast and reliable method for
numerical solution of direct and adjoint diffraction problems. The latter method is ba:
on a variational formulation and combines a finite element method in the grating struc

v =1.5315 v=10
225 %

20.8 %

: 14 %
22.0 %

21.3 %

FIG. 4.4. Optimal design of a 1-to-4 beam splitter for the wavelerigth0.633um. Grating parameters are
d=2.532um andH = 1.747um. The distribution of the transition points is 0.24, 0.38, 0.63.
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TABLE Il
Zero Order Efficiencies and Phase Difference
for Circular Polarizer

0 TE ™ Phase
29.0 97.50 95.72 90.72
29.2 97.50 95.72 90.58
29.4 97.51 95.72 90.45
29.6 97.51 95.72 90.32
29.8 97.52 95.72 90.18
30.0 97.52 95.72 90.04
30.2 97.53 95.72 89.91
30.4 97.53 95.72 89.77
30.6 97.54 95.72 89.63
30.8 97.54 95.72 89.49
31.0 97.55 95.72 89.35

Note.The parameters afe= 10, 6 um,v =12.7451.1i,
d=3um,H=165um, and f=0.24.

with Rayleigh series expansions in the layer system below the grating. This approach is
restricted to binary profiles, but allows the numerical treatment of rather general diffract
structure, together with a complete convergence analysis.

We proposed a generalized finite element method (GFEM) with minimal pollution, whi
provides highly accurate numerical results in the computation of diffraction efficienci
for both the TE and TM mode. In particular, for TM diffraction problems having a milc
singularity of the solution, the convergence performance of our method was compatr:
with that of the rigorous coupled-wave analysis of [6] and the integral equation method
[5]. Moreover, accurate numerical results can be obtained even in the presence of st
singularities of the solution. We expect that the approach can be also extended to the 1
general case of conical diffraction and biperiodic gratings.

To solve optimal design problems for binary gratings by gradient descent we preser
explicit formulae for the gradients with respectto the parameters of the grating profile and
thicknesses of layers. These formulae involve the solutions of direct and adjoint TE and
problems and reduce considerably the computational costs compared to simple differ
approximations of the gradients. The GFEM and the gradient formulae were integrated
a computer program to find the optimal design of binary gratings with desired phase
intensity pattern for a given range of incidence angles or wavelength. Several numer

v =1.5315 174 %
17.1 %

_ 177 %
17.1 %

17.4 %

FIG. 4.5. Optimal design of a 1-to-5 beam splitter for the wavelerigth0.633um. Grating parameters are
d=121.79um andH =0.77 um. The distribution of the transition points is 0.12, 0.36, 0.76.
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examples including polarisation gratings and beam splitters successfully demonstrat
efficiency of the algorithm.
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